CHAPTER 1

Functions and Their Graphs

Section 1.1	Functions	. 46
Section 1.2	Graphs of Functions	. 52
Section 1.3	Shifting, Reflecting, and Stretching Graphs	. 58
Section 1.4	Combinations of Functions	. 64
Section 1.5	Inverse Functions	.72
Review Exer	cises	. 79
Practice Test		84

CHAPTER 1

Functions and Their Graphs

Section 1.1 Functions

- Given a set or an equation, you should be able to determine if it represents a function.
- Given a function, you should be able to do the following.
 - (a) Find the domain.
 - (b) Evaluate it at specific values.

Solutions to Odd-Numbered Exercises

- 1. Yes, it does represent a function. Each domain value is matched with only one range value.
- 3. No, it does not represent a function. The domain values are each matched with three range values.
- 5. Yes, it does represent a function. Each input value is matched with only one output value.
- 7. No, it does not represent a function. The input values of 10 and 7 are each matched with two output values.
- **9.** (a) Each element of A is matched with exactly one element of B, so it does represent a function.
 - (b) The element 1 in A is matched with two elements, -2 and 1 of B, so it does not represent a function.
 - (c) Each element of A is matched with exactly one element of B, so it does represent a function.
 - (d) The element 2 of A is not matched to any element of B, so it does not represent a function.
- 11. Each are functions. For each year there corresponds one and only one circulation.

13.
$$x^2 + y^2 = 4 \implies y = \pm \sqrt{4 - x^2}$$

Thus, y is not a function of x. For instance, the values y = 2 and -2 both correspond to x = 0.

17.
$$2x + 3y = 4 \implies y = \frac{1}{3}(4 - 2x)$$

Thus, y is a function of x.

21.
$$y = |4 - x|$$
 This is a function of x.

25.
$$f(x) = \frac{1}{x+1}$$

(a)
$$f(4) = \frac{1}{(4) + 1} = \frac{1}{5}$$

(c)
$$f(4t) = \frac{1}{(4t)+1} = \frac{1}{4t+1}$$

15.
$$x^2 + y = 4 \implies y = 4 - x^2$$

Thus, y is a function of x.

19.
$$y^2 = x^2 - 1 \implies y = \pm \sqrt{x^2 - 1}$$

Thus, y is not a function of x. For instance, the values $y = \sqrt{3}$ and $-\sqrt{3}$ both correspond to x = 2.

23. x = 4 does not represent y as a function of x. All values of y correspond to x = 4.

(b)
$$f(0) = \frac{1}{(0) + 1} = 1$$

(d)
$$f(x+c) = \frac{1}{(x+c)+1} = \frac{1}{x+c+1}$$

27.
$$f(x) = 2x - 3$$

(a)
$$f(1) = 2(1) - 3 = -1$$

(b)
$$f(-3) = 2(-3) - 3 = -9$$

(c)
$$f(x-1) = 2(x-1) - 3 = 2x - 5$$

29.
$$h(t) = t^2 - 2t$$

(a)
$$h(2) = 2^2 - 2(2) = 0$$

(b)
$$h(1.5) = (1.5)^2 - 2(1.5) = -0.75$$

(c)
$$h(x + 2) = (x + 2)^2 - 2(x + 2) = x^2 + 2x$$

33
$$q(x) = \frac{1}{x^2 - 9}$$

(a)
$$q(0) = \frac{1}{0^2 - 9} = -\frac{1}{9}$$

(b)
$$q(3) = \frac{1}{3^2 - 9}$$
 is undefined.

(c)
$$q(y + 3) = \frac{1}{(y + 3)^2 - 9} = \frac{1}{y^2 + 6y}$$

37.
$$f(x) = \begin{cases} 2x + 1, & x < 0 \\ 2x + 2, & x \ge 0 \end{cases}$$

(a)
$$f(-1) = 2(-1) + 1 = -1$$

(b)
$$f(0) = 2(0) + 2 = 2$$

(c)
$$f(2) = 2(2) + 2 = 6$$

41.
$$h(t) = \frac{1}{2}|t+3|$$

t	-5	-4	-3	-2	-1
h(t)	1	$\frac{1}{2}$	0	$\frac{1}{2}$	1

45.
$$15 - 3x = 0$$

$$3x = 15$$

$$x = 5$$

49.
$$x^2 - 9 = 0$$

$$x^2 = 9$$

$$x = \pm 3$$

31.
$$f(y) = 3 - \sqrt{y}$$

(a)
$$f(4) = 3 - \sqrt{4} = 1$$

(b)
$$f(0.25) = 3 - \sqrt{0.25} = 2.5$$

(c)
$$f(4x^2) = 3 - \sqrt{4x^2} = 3 - 2|x|$$

35.
$$f(x) = \frac{|x|}{x}$$

(a)
$$f(2) = \frac{|2|}{2} = 1$$

(b)
$$f(-2) = \frac{|-2|}{-2} = -1$$

(c)
$$f(x^2) = \frac{|x^2|}{x^2} = 1, x \neq 0$$

39.
$$f(x) = x^2 - 3$$

х	-2	-1	0	1	2
f(x)	1	-2	-3	-2	1

43.
$$f(x) = \begin{cases} -\frac{1}{2}x + 4, & x \le 0\\ (x - 2)^2, & x > 0 \end{cases}$$

х	-2	-1	0	1	2
f(x)	5	$\frac{9}{2}$	4	1	0

47.
$$f(x) = \frac{3x-4}{5} = 0$$

$$3x - 4 = 0$$

$$3x = 4$$

$$x = \frac{4}{2}$$

51.
$$f(x) = \sqrt{x^2 - 16} = 0$$

$$x^2 - 16 = 0$$

$$x^2 = 16$$

$$x = \pm 4$$

53.
$$f(x) = g(x)$$
$$x^{2} = x + 2$$
$$x^{2} - x - 2 = 0$$
$$(x + 1)(x - 2) = 0$$
$$x = -1 \text{ or } x = 2$$

57.
$$f(x) = 5x^2 + 2x - 1$$

Since $f(x)$ is a polynomial, the domain is all real numbers x .

61.
$$g(y) = \sqrt{y - 10}$$

Domain: $y - 10 \ge 0$
 $y \ge 10$

65.
$$g(x) = \frac{1}{x} - \frac{1}{x+2}$$

Domain: All real numbers except

$$x = 0, x = -2.$$

69.
$$f(x) = \frac{\sqrt[3]{x-4}}{x}$$
. Domain: all $x \neq 0$.

73.
$$f(x) = \sqrt{x+2}$$
 {(-2, 0), (-1, 1), $(0, \sqrt{2})$, $(1, \sqrt{3})$, (2, 2)}

75. By plotting the points, we have a parabola, so
$$g(x) = cx^2$$
. Since $(-4, -32)$ is on the graph, we have $-32 = c(-4)^2 \implies c = -2$. Thus, $g(x) = -2x^2$.

77. Since the function is undefined at 0, we have
$$r(x) = \frac{c}{x}$$
. Since $(-8, -4)$ is on the graph, we have $-4 = \frac{c}{-8} \implies c = 32$. Thus, $r(x) = \frac{32}{x}$.

79.
$$f(x) = 2x$$

 $f(x+c) = 2(x+c) = 2x + 2c$
 $f(x+c) - f(x) = (2x + 2c) - 2x = 2c$
 $\frac{f(x+c) - f(x)}{c} = \frac{2c}{c} = 2, c \neq 0$

55.
$$f(x) = g(x)$$

$$\sqrt{3x} + 1 = x + 1$$

$$\sqrt{3x} = x$$

$$3x = x^2$$

$$0 = x^2 - 3x$$

$$0 = x(x - 3)$$

$$x = 0 \text{ or } x = 3$$

59.
$$h(t) = \frac{4}{t}$$
Domain: All real numbers except $t = 0$

63.
$$f(x) = \sqrt[4]{1 - x^2}$$

Domain: $1 - x^2 \ge 0$
 $x^2 - 1 \le 0$
 $-1 \le x \le 1$

67.
$$f(s) = \frac{\sqrt{s-1}}{s-4}$$

Domain: $s-1 \ge 0$ and $s-4 \ne 0$. That is, all real numbers $s \ge 1$, $s \ne 4$.

71.
$$f(x) = x^2$$
 {(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)}

81.
$$f(x) = x^{2} - x + 1$$

$$f(2 + h) = (2 + h)^{2} - (2 + h) + 1$$

$$= 4 + 4h + h^{2} - 2 - h + 1$$

$$= h^{2} + 3h + 3$$

$$f(2) = (2)^{2} - 2 + 1 = 3$$

$$f(2 + h) - f(2) = h^{2} + 3h$$

$$\frac{f(2 + h) - f(2)}{h} = h + 3, h \neq 0$$

83.
$$f(x) = x^3$$

 $f(x+c) = (x+c)^3 = x^3 + 3x^2c + 3xc^2 + c^3$

$$\frac{f(x+c) - f(x)}{c} = \frac{(x^3 + 3x^2c + 3xc^2 + c^3) - x^3}{c}$$

$$= \frac{c(3x^2 + 3xc + c^2)}{c}$$

$$= 3x^2 + 3xc + c^2, \ c \neq 0$$

85.
$$f(t) = \frac{1}{t}$$

 $f(1) = 1$

$$\frac{f(t) - f(1)}{t - 1} = \frac{\frac{1}{t} - 1}{t - 1} = \frac{1 - t}{t(t - 1)} = -\frac{1}{t}, t \neq 1$$

87.
$$A = \pi r^2$$
, $C = 2\pi r$

$$r = \frac{C}{2\pi}$$

$$A = \pi \left(\frac{C}{2\pi}\right)^2 = \frac{C^2}{4\pi}$$

89. Area = A =
$$\frac{1}{2}bh = \frac{1}{2}(s)(s) = \frac{s^2}{2}$$

91. (a)	Height, x	Width	Volume, V
	1	24 - 2(1)	$1[24 - 2(1)]^2 = 484$
	2	24 - 2(2)	$2[24 - 2(2)]^2 = 800$
	3	24 - 2(3)	$3[24 - 2(3)]^2 = 972$
	4	24 - 2(4)	$4[24 - 2(4)]^2 = 1024$
	5	24 - 2(5)	$5[24 - 2(5)]^2 = 980$
	6	24 - 2(6)	$6[24 - 2(6)]^2 = 864$

The volume is maximum when x = 4.

$$V = x(24 - 2x)^2$$

Domain: $0 < x < 12$

(c)
$$V(9) = 324$$
; $V(10) = 160$

(d)
$$V(9) = 9(24 - 2(9))^2 = 9(36) = 324$$

 $V(10) = 10(24 - 2(10))^2 = 10(16) = 160$

Since (0, y), (2, 1) and (x, 0) all lie on the same line, the slopes between any pair of points are equal.

$$\frac{1-y}{2-0} = \frac{1-0}{2-x}$$

$$1 - y = \frac{2}{2 - x}$$

$$y = 1 - \frac{2}{2 - x} = \frac{x}{x - 2}$$

Therefore,
$$A = \frac{1}{2}xy = \frac{1}{2}x(\frac{x}{x-2}) = \frac{x^2}{2x-4}$$

The domain is x > 2, since A > 0.

95. (a) $V = (length)(width)(height) = yx^2$

But,
$$y + 4x = 108$$
, or $y = 108 - 4x$.

Thus,
$$V = (108 - 4x)x^2$$
.

(b) Since
$$y = 108 - 4x > 0$$

Domain: 0 < x < 27

(d) The highest point on the graph occurs at x = 18. The dimensions that maximize the volume are $18 \times 18 \times 36$ inches.

97. (a) Cost = variable costs + fixed costs

$$C = 12.30x + 98,000$$

(b) Revenue = price per unit \times number of units

$$R = 17.98x$$

(c) Profit = Revenue - Cost

$$P = 17.98x - (12.30x + 98,000)$$

$$P = 5.68x - 98,000$$

99. (a) R = (rate)(number of people)

$$= [8 - 0.05(n - 80)]n$$

$$= (12 - 0.05n)n = \frac{240n - n^2}{20}$$

(b)	n	90	100	110	120	130	140	150
	R(n)	675	700	715	720	715	700	675

The revenue increases, and then decreases. The maximum revenue occurs when n = 120.

(c)

The maximum occurs at n = 120.

(b)
$$3000^2 + h^2 = d^2$$

 $h^2 = d^2 - 3000^2$

$$h^2 = d^2 - 3000^2$$
$$h = \sqrt{d^2 - 3000^2}, d \ge 3000$$

(d) When $d = 10,000, h \approx 9539.4$ feet.

Algebraically,
$$h = \sqrt{10,000^2 - 3000^2} = \sqrt{91,000,000}$$

 $\approx 9539.4 \text{ feet}$

103. False. The range of
$$f(x)$$
 is $[-1, \infty)$.

105. No. The element 3 in A has two images in
$$B$$
, u and v .

107. An advantage of function notation is that it gives a name to the relationship so it can easily be referenced. When evaluating a function, you see both the input and output values.

109.

111.

113. Center:
$$(-8, -5)$$

Radius:
$$\frac{3}{4}$$

$$(x - (-8))^2 + (y - (-5))^2 = \left(\frac{3}{4}\right)^2$$
$$(x + 8)^2 + (y + 5)^2 = \frac{9}{16}$$

115. Endpoints of dimeter:
$$(6, -5), (-2, 7)$$

Center:
$$\left(\frac{6-2}{2}, \frac{-5+7}{2}\right) = (2, 1)$$

Radius:
$$\sqrt{(6-2)^2 + (-5-1)^2} = \sqrt{16+36}$$

$$(x-2)^2 + (y-1)^2 = 52$$