Section 1.5 Inverse Functions

- Two functions f and g are inverses of each other if $f(g(x))=x$ for every x in the domain of g and $g(f(x))=x$ for every x in the domain of f.
- Be able to find the inverse of a function, if it exists.

1. Replace $f(x)$ with y.
2. Interchange x and y.
3. Solve for y. If this equation represents y as a function of x, then you have found $f^{-1}(x)$. If this equation does not represent y as a function of x, then f does not have an inverse function.

- A function f has an inverse function if and only if no horizontal line crosses the graph of f at more than one point.
- A function f has an inverse function if and only if f is one-to-one.

Solutions to Odd-Numbered Exercises

1. The inverse is a line through $(-1,0)$.

Matches graph (c).
5. $f^{-1}(x)=\frac{x}{8}=\frac{1}{8} x$
$f\left(f^{-1}(x)\right)=f\left(\frac{x}{8}\right)=8\left(\frac{x}{8}\right)=x$
$f^{-1}(f(x))=f^{-1}(8 x)=\frac{8 x}{8}=x$
3. The inverse is half a parabola starting at $(1,0)$. Matches graph (a).
7. $f^{-1}(x)=x-10$
$f\left(f^{-1}(x)\right)=f(x-10)=(x-10)+10=x$
$f^{-1}(f(x))=f^{-1}(x+10)=(x+10)-10=x$
9. $f^{-1}(x)=\frac{x-1}{2}$
$f\left(f^{-1}(x)\right)=f\left(\frac{x-1}{2}\right)=2\left(\frac{x-1}{2}\right)+1=(x-1)+1=x$
$f^{-1}(f(x))=f^{-1}(2 x+1)=\frac{(2 x+1)-1}{2}=\frac{2 x}{2}=x$
11. $f^{-1}(x)=x^{3}$
$f\left(f^{-1}(x)\right)=f\left(x^{3}\right)=\sqrt[3]{x^{3}}=x$
$f^{-1}(f(x))=f^{-1}(\sqrt[3]{x})=(\sqrt[3]{x})^{3}=x$
13. (a) $f(g(x))=f\left(\frac{x}{2}\right)=2\left(\frac{x}{2}\right)=x$ $g(f(x))=g(2 x)=\frac{2 x}{2}=x$
(b)

15. (a) $f(g(x))=f\left(\frac{x-1}{5}\right)=5\left(\frac{x-1}{5}\right)+1=x$

$$
g(f(x))=g(5 x+1)=\frac{(5 x+1)-1}{5}=x
$$

(b)

19. (a) $f(g(x))=f\left(x^{2}+4\right), x \geq 0$

$$
\begin{aligned}
& =\sqrt{\left(x^{2}+4\right)-4}=x \\
g(f(x)) & =g(\sqrt{x-4}) \\
& =(\sqrt{x-4})^{2}+4=x
\end{aligned}
$$

(b)

Reflections in the line $y=x$
17. (a) $f(g(x))=f(\sqrt[3]{x})=(\sqrt[3]{x})^{3}=x$ $g(f(x))=g\left(x^{3}\right)=\sqrt[3]{x^{3}}=x$
(b)

Reflections in the line $y=x$
21. (a) $f(g(x))=f(\sqrt[3]{1-x})=1-(\sqrt[3]{1-x}))^{3}=1-(1-x)=x$ $g(f(x))=g\left(1-x^{3}\right)=\sqrt[3]{1-\left(1-x^{3}\right)}=\sqrt[3]{x^{3}}=x$
(b)

Reflections in the line $y=x$
23. (a) $f(g(x))=f\left(-\frac{2 x+6}{7}\right)=-\frac{7}{2}\left(-\frac{2 x+6}{7}\right)-3=\frac{2 x+6}{2}-3=(x+3)-3=x$

$$
g(f(x))=g\left(-\frac{7}{2} x-3\right)=-\frac{2\left(-\frac{7}{2} x-3\right)+6}{7}=-\frac{-7 x-6+6}{7}=\frac{7 x}{7}=x
$$

(b)

x	2	0	-2	-4	-6
$f(x)$	-10	-3	4	11	18

x	-10	-3	4	11	18
$g(x)$	2	0	-2	-4	-6

Note that the entries in the tables are the same except that the rows are interchanged.
25. (a) $f(g(x))=f(\sqrt[3]{x-5})=[\sqrt[3]{x-5}]^{3}+5=(x-5)+5=x$

$$
g(f(x))=g\left(x^{3}+5\right)=\sqrt[3]{\left(x^{3}+5\right)-5}=\sqrt[3]{x^{3}}=x
$$

(b)

x	-3	-2	-1	0	1
$f(x)$	-22	-3	4	5	6

x	-22	-3	4	5	6
$g(x)$	-3	-2	-1	0	1

Note that the entries in the tables are the same except that the rows are interchanged.
27. (a) $f(g(x))=f\left(8+x^{2}\right)=-\sqrt{\left(8+x^{2}\right)-8}=-\sqrt{x^{2}}=-(-x)=x$
$\left[\right.$ Since $x \leq 0, \sqrt{x^{2}}=-x$]

$$
g(f(x))=g(-\sqrt{x-8})=8+[-\sqrt{x-8}]^{2}=8+(x-8)=x
$$

(b)

x	8	9	12	17	24
$f(x)$	0	-1	-2	-3	-4

x	0	-1	-2	-3	-4
$g(x)$	8	9	12	17	24

Note that the entries in the tables are the same except that the rows are interchanged.
29. Since no horizontal line crosses the graph of f at more than one point, f has an inverse.

33. No, because some horizontal lines intersect the graph more than once, h does not have an inverse.

31. Since some horizontal lines cross the graph of f twice, f does not have an inverse.

35. Yes, because no horizontal lines intersect the graph at more than one point, f has an inverse.

37. f does not pass the horizontal line test, so f has no inverse.

41. $h(x)=|x+4|-|x-4|$

h does not pass the horizontal line test, so h does not have an inverse.
45. $f(x)=x^{5}$

$$
\begin{aligned}
& y=x^{5} \\
& x=y^{5} \\
& y=\sqrt[5]{x}
\end{aligned}
$$

$$
f^{-1}(x)=\sqrt[5]{x}
$$

Reflections in the line $y=x$
49. $f(x)=\sqrt{4-x^{2}}, 0 \leq x \leq 2$
$y=\sqrt{4-x^{2}}$
$x=\sqrt{4-y^{2}}$
$x^{2}=4-y^{2}$
$y^{2}=4-x^{2}$
$y=\sqrt{4-x^{2}}$
$f^{-1}(x)=\sqrt{4-x^{2}}, 0 \leq x \leq 2$

Reflections in the line $y=x$
39. g passes the horizontal line test, so g has an inverse.

43. $f(x)=2 x-3$

$$
\begin{aligned}
& y=2 x-3 \\
& x=2 y-3 \\
& y=\frac{x+3}{2}
\end{aligned}
$$

$f^{-1}(x)=\frac{x+3}{2}$
Reflections in the line $y=x$
47. $f(x)=\sqrt{x}$ $y=\sqrt{x}$ $x=\sqrt{y}$ $y=x^{2}$

$f^{-1}(x)=x^{2}, x \geq 0$
Reflections in the line $y=x$
51. $f(x)=\sqrt[3]{x-1}$

$$
\begin{aligned}
y & =\sqrt[3]{x-1} \\
x & =\sqrt[3]{y-1} \\
x^{3} & =y-1 \\
y & =x^{3}+1
\end{aligned}
$$

$f^{-1}(x)=x^{3}+1$
Reflections in the line $y=x$
53. $f(x)=\frac{4}{x}$

$$
y=\frac{4}{x}
$$

$$
x=\frac{4}{y}
$$

$$
x y=4
$$

$$
y=\frac{4}{x}
$$

$$
f^{-1}(x)=\frac{4}{x}
$$

Reflections in the line $y=x$
57. $f(x)=\frac{3 x+4}{5}$

$$
\begin{aligned}
y & =\frac{3 x+4}{5} \\
x & =\frac{3 y+4}{5} \\
5 x & =3 y+4 \\
5 x-4 & =3 y \\
(5 x-4) / 3 & =y \\
f^{-1}(x) & =\frac{5 x-4}{3}
\end{aligned}
$$

f is one-to-one and has an inverse.
55. $f(x)=x^{4}$

$$
\begin{aligned}
& y=x^{4} \\
& x=y^{4} \\
& y= \pm \sqrt[4]{x}
\end{aligned}
$$

f is not one-to-one.
This does not represent y as a function of x. f does not have an inverse.
59. $f(x)=(x+3)^{2}, x \geq-3, y \geq 0$

$$
\begin{array}{r}
y=(x+3)^{2}, x \geq-3, y \geq 0 \\
x=(y+3)^{2}, y \geq-3, x \geq 0 \\
\sqrt{x}=y+3, y \geq-3, x \geq 0 \\
y=\sqrt{x}-3, x \geq 0, y \geq-3
\end{array}
$$

f is one-to-one.
This is a function of x, so f has an inverse.
$f^{-1}(x)=\sqrt{x}-3, x \geq 0$

61. $h(x)=\frac{4}{x^{2}}$ is not one-to-one, and does not have an inverse. For example, $h(1)=h(-1)=4$.
63. $f(x)=\sqrt{2 x+3} \Rightarrow x \geq-\frac{3}{2}, y \geq 0$

$$
\begin{aligned}
& y=\sqrt{2 x+3}, x \geq-\frac{3}{2}, y \geq 0 \\
& x=\sqrt{2 y+3}, y \geq-\frac{3}{2}, x \geq 0 \\
& x^{2}=2 y+3, x \geq 0, y \geq-\frac{3}{2} \\
& y=\frac{x^{2}-3}{2}, x \geq 0, y \geq-\frac{3}{2}
\end{aligned}
$$

f is one to one.
This is a function of x, so f has an inverse.
$f^{-1}(x)=\frac{x^{2}-3}{2}, x \geq 0$
65. $g(x)=x^{2}-x^{4}$

The graph fails the horizontal line test, so g does not have an inverse. g is not one-to-one.

69. If we let $f(x)=(x-2)^{2}, x \geq 2$, then f has an inverse. [Note: we could also let $x \leq 2$.]

$$
\begin{array}{rlrl}
f(x) & =(x-2)^{2}, & x \geq 2, \quad y \geq 0 \\
y & =(x-2)^{2}, & x \geq 2, \quad y \geq 0 \\
x & =(y-2)^{2}, & x \geq 0, \quad y \geq 2 \\
\sqrt{x} & =y-2, \quad x \geq 0, y \geq 2 \\
\sqrt{x}+2 & =y, & x \geq 0, y \geq 2
\end{array}
$$

Thus, $f^{-1}(x)=\sqrt{x}+2, x \geq 0$.
73.

x	$f(x)$
-2	-4
-1	-2
1	2
3	3

x	$f^{-1}(x)$
-4	-2
-2	-1
2	1
3	3

75. $f(x)=x^{3}+x+1$

The graph of the inverse relation is an inverse function since it satisfies the vertical line test.
67. $f(x)=a x+b, a \neq 0$

$$
y=a x+b
$$

$$
x=a y+b
$$

$$
x-b=a y
$$

$$
y=(x-b) / a
$$

f is one-to-one and has an inverse, $f^{-1}(x)=\frac{x-b}{a}$.
71. If we let $f(x)=|x+2|, x \geq-2$, then f has an inverse. [Note: we could also let $x \leq-2$.]

$$
\begin{aligned}
& \begin{aligned}
f(x) & =|x+2|, \quad x \geq-2 \\
f(x) & =x+2 \text { when } x \geq-2 \\
y & =x+2, \quad x \geq-2, \quad y \geq 0 \\
x & =y+2, \quad x \geq 0, y \geq-2 \\
x-2 & =y, \quad x \geq 0, y \geq-2
\end{aligned} \\
& \text { Thus, } f^{-1}(x)=x-2, \quad x \geq 0 .
\end{aligned}
$$

77. $g(x)=\frac{3 x^{2}}{x^{2}+1}$

The graph of the inverse relation is not an inverse function since it does not satisfy the vertical line test.

In Exercises 79, 81, and 83, $f(x)=\frac{1}{8} x-3, f^{-1}(x)=8(x+3), g(x)=x^{3}, g^{-1}(x)=\sqrt[3]{x}$.
79. $\left(f^{-1} \circ g^{-1}\right)(1)=f^{-1}\left(g^{-1}(1)\right)=f^{-1}(\sqrt[3]{1})=8(\sqrt[3]{1}+3)=8(1+3)=32$
81. $\left(f^{-1} \circ f^{-1}\right)(6)=f^{-1}\left(f^{-1}(6)\right)=f^{-1}(8[6+3])=f^{-1}(72)=8(72+3)=600$
83. $(f \circ g)(x)=f(g(x))=f\left(x^{3}\right)=\frac{1}{8} x^{3}-3$. Now find the inverse of $(f \circ g)(x)=\frac{1}{8} x^{3}-3$:

$$
\begin{aligned}
y & =\frac{1}{8} x^{3}-3 \\
x & =\frac{1}{8} y^{3}-3 \\
x+3 & =\frac{1}{8} y^{3} \\
8(x+3) & =y^{3} \\
\sqrt[3]{8(x+3)} & =y \\
(f \circ g)^{-1}(x) & =2 \sqrt[3]{x+3}
\end{aligned}
$$

Note: $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$
In Exercises 85 and 87, $f(x)=x+4, f^{-1}(x)=x-4, g(x)=2 x-5, g^{-1}(x)=\frac{x+5}{2}$.
85. $\left(g^{-1} \circ f^{-1}\right)(x)=g^{-1}\left(f^{-1}(x)\right)=g^{-1}(x-4)=\frac{(x-4)+5}{2}=\frac{x+1}{2}$
87. $(f \circ g)(x)=f(g(x))=f(2 x-5)=(2 x-5)+4=2 x-1$ Now find the inverse of $(f \circ g)(x)=2 x-1$:

$$
\begin{gathered}
y=2 x-1 \\
x=2 y-1 \\
x+1=2 y \\
y=\frac{x+1}{2} \\
(f \circ g)^{-1}(x)=\frac{x+1}{2}
\end{gathered}
$$

Note that $(f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x)$; see Exercise 94.
89. (a) $y=8+0.75 x$

$$
\begin{aligned}
x & =8+0.75 y \\
x-8 & =0.75 y \\
\frac{x-8}{0.75} & =y
\end{aligned}
$$

(b)

$$
y=f^{-1}(x)=\frac{x-8}{0.75}
$$

(c) If 10 units are produced, then $y=8+0.75(10)=\$ 15.50$
$x=$ hourly wage
$y=$ number of units produced
(d) If the hourly wage is $\$ 22.25$, then $y=\frac{22.25-8}{0.75}=19$ units.

