CHAPTER 2

Polynomial and Rational Functions

Section 2.1	Quadratic Functions	86
Section 2.2	Polynomial Functions of Higher Degree	93
Section 2.3	Real Zeros of Polynomial Functions	01
Section 2.4	Complex Numbers	10
Section 2.5	The Fundamental Theorem of Algebra	13
Section 2.6	Rational Functions and Asymptotes	19
Section 2.7	Graphs of Rational Functions	23
Review Exer	cises	31
Practice Test		41

CHAPTER 2

Polynomial and Rational Functions

Section 2.1 Quadratic Functions

You should know the following facts about parabolas.

- $f(x) = ax^2 + bx + c, \ a \ne 0,$ is a quadratic function, and its graph is a parabola.
- If a > 0, the parabola opens upward and the vertex is the minimum point. If a < 0, the parabola opens downward and the vertex is the maximum point.
- $\blacksquare \quad \text{The vertex is } (-b/2a, f(-b/2a)).$
- \blacksquare To find the *x*-intercepts (if any), solve

$$ax^2 + bx + c = 0.$$

■ The standard form of the equation of a parabola is

$$f(x) = a(x - h)^2 + k$$

where $a \neq 0$.

- (a) The vertex is (h, k).
- (b) The axis is the vertical line x = h.

Solutions to Odd-Numbered Exercises

- 1. $f(x) = (x 2)^2$ opens upward and has vertex (2, 0). Matches graph (g).
- 5. $f(x) = 4 (x 2)^2 = -(x 2)^2 + 4$ opens downward and has vertex (2, 4). Matches graph (f).
- **9.** (a) $y = \frac{1}{2}x^2$

Vertical shrink

(c)
$$y = \frac{3}{2}x^2$$

Vertical stretch

- 3. $f(x) = x^2 2$ opens upward and has vertex (0, -2). Matches graph (b).
- 7. $f(x) = x^2 + 3$ opens upward and has vertex (0, 3). Matches graph (e).

Vertical shrink and reflection in the x-axis

(d) $y = -3x^2$

Vertical stretch and reflection in the *x*-axis

Horizontal shift one unit to the right

(c)
$$y = (x - 3)^2$$

Horizontal shift three units to the right

13.
$$f(x) = 25 - x^2$$

Vertex: (0, 25)

Intercepts: (-5, 0), (0, 25), (5, 0)

17.
$$f(x) = (x + 4)^2 - 3$$

Vertex: (-4, -3)

Intercepts: $(0, 13), (-4 \pm \sqrt{3}, 0)$

(b)
$$y = (x + 1)^2$$

Horizontal shift one unit to the left.

(d)
$$y = (x + 3)^2$$

Horizontal shift three units to the left

15.
$$f(x) = \frac{1}{2}x^2 - 4$$

Vertex: (0, -4)

Intercepts: $(\pm 2\sqrt{2}, 0)$, (0, -4)

19. $h(x) = x^2 - 8x + 16 = (x - 4)^2$

Vertex: (4, 0)

Intercepts: (0, 16), (4, 0)

21. $f(x) = x^2 - x + \frac{5}{4} = \left(x - \frac{1}{2}\right)^2 + 1$ Vertex: $\left(\frac{1}{2}, 1\right)$

88

Intercepts: $(0, \frac{5}{4})$

25. $h(x) = 4x^2 - 4x + 21 = 4(x - \frac{1}{2})^2 + 20$

Vertex: $(\frac{1}{2}, 20)$

Intercept: (0, 21)

29. $g(x) = x^2 + 8x + 11 = (x + 4)^2 - 5$

Vertex: (-4, -5)

Intercepts: $(-4\pm\sqrt{5}, 0)$, (0, 11)

33. $g(x) = \frac{1}{2}(x^2 + 4x - 2) = \frac{1}{2}(x^2 + 4x + 4 - 6)$ = $\frac{1}{2}(x + 2)^2 - 3$

Vertex: (-2, -3)

Intercepts: $(-2 \pm \sqrt{6}, 0), (0, -1)$

23. $f(x) = -x^2 + 2x + 5 = -(x - 1)^2 + 6$

Vertex: (1, 6)

Intercepts: $(1 - \sqrt{6}, 0), (0, 5), (1 + \sqrt{6}, 0)$

27. $f(x) = -(x^2 + 2x - 3) = -(x + 1)^2 + 4$

Vertex: (-1, 4)

Intercepts: (-3, 0), (0, 3), (1, 0)

31. $f(x) = 2x^2 - 16x + 31$ = $2(x - 4)^2 - 1$

Vertex: (4, -1)

Intercepts: $(4 \pm \frac{1}{2}\sqrt{2}, 0)$, (0, 31)

35. (1, 0) is the vertex.

$$f(x) = a(x - 1)^2 + 0 = a(x - 1)^2$$

Since the graph passes through the point (0, 1) we have:

$$1 = a(0 - 1)^2$$

1 = a

$$f(x) = 1(x - 1)^2 = (x - 1)^2$$

37. (-1, 4) is the vertex.

$$f(x) = a(x + 1)^2 + 4$$

Since the graph passes through the point (1, 0)we have

89

$$0 = a(1+1)^2 + 4$$

$$0 = 4a + 4$$

$$-1 = a$$

Thus, $f(x) = -(x + 1)^2 + 4$. Note that (-3, 0) is on the parabola.

41. (3, 4) is the vertex.

$$f(x) = a(x - 3)^2 + 4$$

Since the graph passes through the point (1, 2), we have:

$$2 = a(1-3)^2 + 4$$

$$-2 = 4a$$

$$-\frac{1}{2} = a$$

$$f(x) = -\frac{1}{2}(x-3)^2 + 4$$

45. $\left(\frac{5}{2}, -\frac{3}{4}\right)$ is the vertex.

$$f(x) = a(x - \frac{5}{2})^2 - \frac{3}{4}$$

Since the graph passes through (-2, 4),

$$4 = a(-2 - \frac{5}{2})^2 - \frac{3}{4}$$

$$\frac{19}{4} = a\left(-\frac{9}{2}\right)^2$$

$$19 = 81a$$

$$a = \frac{19}{81}$$

Thus,
$$f(x) = \frac{19}{81}(x - \frac{5}{2})^2 - \frac{3}{4}$$

49.
$$y = x^2 - 4x - 5$$

$$0 = x^2 - 4x - 5$$

x-intercepts:
$$(5, 0), (-1, 0)$$
 $0 = (x - 5)(x + 1)$

$$x = 5 \text{ or } x = -1$$

39. (-2, 5) is the vertex.

$$f(x) = a(x + 2)^2 + 5$$

Since the graph passes through the point (0, 9), we have:

$$9 = a(0+2)^2 + 5$$

$$4 = 4a$$

$$1 = a$$

$$f(x) = 1(x + 2)^2 + 5 = (x + 2)^2 + 5$$

43. (-2, -2) is the vertex

$$f(x) = a(x + 2)^2 - 2$$

Since the graph passes through (-1, 0),

$$0 = a(-1 + 2)^2 - 2$$

$$0 = a - 2$$

$$2 = a$$

Thus,
$$f(x) = 2(x + 2)^2 - 2$$

47.
$$y = x^2 - 16$$
 $0 = x^2 - 16$

$$0 = x^2 - 16$$

x-intercepts:
$$(\pm 4, 0)$$
 $x^2 = 16$

$$x = \pm 4$$

51.
$$y = x^2 - 4x$$

$$0 = x^2 - 4x$$

x-intercepts: (0, 0), (4, 0)

53.
$$y = 2x^2 - 7x - 30$$

$$0 = 2x^2 - 7x - 30$$

$$0 = (2x + 5)(x - 6)$$

$$x = -\frac{5}{2}$$
 or $x = 6$

x-intercepts:

$$\left(-\frac{5}{2},0\right)$$
, $(6,0)$

55.
$$y = -\frac{1}{2}(x^2 - 6x - 7)$$

x-intercepts:

$$(-1,0),(7,0)$$

$$0 = -\frac{1}{2}(x^2 - 6x - 7)$$

$$0 = x^2 - 6x - 7$$

$$0 = (x+1)(x-7)$$

$$x = -1, 7$$

Note: f(x) = a(x + 1)(x - 3) has x-intercepts (-1, 0) and (3, 0) for all real numbers $a \neq 0$.

61. Let x = the first number and y = the second number. Then the sum is

$$x + y = 110 \implies y = 110 - x.$$

The product is $P(x) = xy = x(110 - x) = 110x - x^2.$

$$P(x) = -x^{2} + 110x$$

$$= -(x^{2} - 110x + 3025 - 3025)$$

$$= -[(x - 55)^{2} - 3025]$$

$$= -(x - 55)^{2} + 3025$$

The maximum value of the product occurs at the vertex of P(x) and is 3025. This happens when x = y = 55.

$$y = 50 - x$$

(a) A(x) = xy = x(50 - x)Domain: 0 < x < 50

59.
$$f(x) = [x - (-3)][x - (-\frac{1}{2})](2)$$
 opens upward
 $= (x + 3)(x + \frac{1}{2})(2)$
 $= (x + 3)(2x + 1)$
 $= 2x^2 + 7x + 3$
 $g(x) = -(2x^2 + 7x + 3)$ opens downward
 $= -2x^2 - 7x - 3$

Note: f(x) = a(x + 3)(2x + 1) has x-intercepts (-3, 0) and $(-\frac{1}{2}, 0)$ for all real numbers $a \neq 0$.

63. Let x be the first number and y be the second number. Then $x + 2y = 24 \implies x = 24 - 2y$.

The product is $P = xy = (24 - 2y)y = 24y - 2y^2$. Completing the square,

$$P = -2y^{2} + 24y$$

$$= -2(y^{2} - 12y + 36) + 72$$

$$= -2(y - 6)^{2} + 72.$$

The maximum value of the product P occurs at the vertex of the parabola and equals 72. This happens when y = 6 and x = 24 - 2(6) = 12.

(c) The area is maximum (625 square feet) when x = y = 25. The rectangle has dimensions 25 ft \times 25 ft. Algebraically, you have:

$$A(x) = -(x^2 - 50x)$$

$$= -(x^2 - 50x + 625) + 625$$

$$= -(x - 25)^2 + 625$$

A(x) is a maximum of 625 when x = 25.

91

(c) Distance traveled around track in one lap:

$$d = \pi y + 2x = 200$$

$$\pi y = 200 - 2x$$

$$y = \frac{200 - 2x}{\pi}$$

The area is maximum when x = 50 and

$$y = \frac{200 - 2(50)}{\pi} = \frac{100}{\pi}.$$

69.
$$C = 800 - 10x + 0.25x^2$$

The minimum cost occurs at the vertex.

$$x = -\frac{b}{2a} = -\frac{(-10)}{2(0.25)} = \frac{10}{.5} = 20$$

C(20) = 700 is the minimum cost.

Graphically, you could graph $C = 800 - 10x + 0.25x^2$ in the window $[0, 40] \times [0, 1000]$ and find the vertex (20, 700).

73.
$$y = -\frac{1}{12}x^2 + 2x + 4$$

(b) When x = 0, y = 4 feet.

(c) The vertex occurs at
$$x = -\frac{b}{2a} = -\frac{2}{2(-1/12)} = 12$$
.

The maximum height is

$$y = -\frac{1}{12}(12)^2 + 2(12) + 4$$
$$= 16 \text{ feet.}$$

(b) Radius of semicircular ends of track: $r = \frac{1}{2}y$ distance around two semicircular parts of track:

$$d = 2\pi r = 2\pi \left(\frac{1}{2}y\right) = \pi y$$

(d) Area of rectangular region:

$$A = xy = x \left(\frac{200 - 2x}{\pi}\right)$$

$$= \frac{1}{\pi} (200x - 2x^2)$$

$$= -\frac{2}{\pi} (x^2 - 100x)$$

$$= -\frac{2}{\pi} (x^2 - 100x + 2500 - 2500)$$

$$= -\frac{2}{\pi} (x - 50)^2 + \frac{5000}{\pi}$$

The area is maximum when x = 50 and

$$y = \frac{200 - 2(50)}{\pi} = \frac{100}{\pi}.$$

71.
$$P = -0.0002x^2 + 140x - 250,000$$

The vertex of this parabola is at

$$x = -\frac{b}{2a} = -\frac{140}{2(-0.0002)} = \frac{140}{0.0004}$$
$$= 350,000 \text{ units}$$

Thus, the maximum profit is attained at a sales level of 350,000 units.

(d) You can solve this part graphically by finding the *x*-intercept of the graph:

$$x \approx 25.856$$
.

Algebraically,

$$0 = -\frac{1}{12}x^2 + 2x + 4$$

 $0 = x^2 - 24x - 48$ (Multiply both sides by -12.)

$$x = \frac{-(-24) \pm \sqrt{(-24)^2 - 4(1)(-48)}}{2(1)}$$

$$=\frac{24 \pm \sqrt{768}}{2} = \frac{24 \pm 16\sqrt{3}}{2} = 12 \pm 8\sqrt{3}$$

Using the positive value for x, we have

$$x = 12 + 8\sqrt{3} \approx 25.86$$
 feet.

(b) Using a graphing utility, the maximum is approximately 4242 cigarettes at t = 18.3, or 1968. Yes, the warnings on cigarette packages seemed to have an effect.

79. True $-12x^2 - 1 = 0$ $12x^2 = -1 \text{ impossible}$

83.
$$y = 3x - 10 = \frac{1}{4}x + 1$$

 $12x - 40 = x + 4$
 $11x = 44$
 $x = 4$

The graphs intersect at (4, 2).

87.
$$y^2 = x^2 - 9$$

 $y = \pm \sqrt{x^2 - 9}$
No, y is not a function of x.

(b) V(16) = 166.69 board feet

(c)
$$500 = 0.77x^2 - 1.32x - 9.31$$

 $0 = 0.77x^2 - 1.32x - 509.31$

Using the Quadratic Formula and selecting the positive value for x, we have $x \approx 26.6$ inches in diameter. Or, use a graphing utility.

(c) For 1960, $C(10) \approx 4038$ cigarettes per person. The annual consumption per smoker was

$$\frac{4038(116,530,000)}{48,500,000} = 9702 \text{ per smoker per year.}$$

The daily consumption per smoker was

$$\frac{9702}{365} \approx 26.6$$
 cigarettes per smoker per day.

81. Model (a) is preferable. a > 0 means the parabola opens upward and profits are increasing for t to the right of the vertex,

$$t \ge -\frac{b}{(2a)}$$
.

85.
$$y = x^3 + 2x - 1 = -2x + 15$$

 $x^3 + 4x - 16 = 0$
 $(x - 2)(x^2 + 2x + 8) = 0$
 $x = 2$

The graphs intersect at (2, 11).

y is not a function of x.

89.
$$x^{2} + y^{2} - 6x + 8y = 0$$
$$(x^{2} - 6x + 9) + (y^{2} + 8y + 16) = 9 + 16$$
$$(x - 3)^{2} + (y + 4)^{2} = 25$$
 Circle