Section 2.2 Polynomial Functions of Higher Degree

Solutions to Odd-Numbered Exercises

1. f(x) = -2x + 3 is a line with y-intercept (0, 3). Matches graph (f).

3. $f(x) = -2x^2 - 5x$ is a parabola with x-intercepts (0, 0) and $\left(-\frac{5}{2}, 0\right)$ and opens downward. Matches graph (c).

5. $f(x) = -\frac{1}{4}x^4 + 3x^2$ has intercepts (0, 0) and $(\pm 2\sqrt{3}, 0)$. Matches graph (e).

7. $f(x) = x^4 + 2x^3$ has intercepts (0, 0) and (-2, 0). Matches graph (g).

9.
$$y = x^{3}$$

(a) $f(x) = (x - 2)^{3}$
 y
 4^{+}
 3^{-}
 2^{-}
 1^{-}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 -3^{-2}
 $-3^$

Horizontal shift two units to the right

Reflection in the x-axis and a vertical shrink

11.
$$y = x^4$$

(a)
$$f(x) = (x + 5)^4$$

Horizontal shift five units to the left

(c)
$$f(x) = 4 - x^4$$

Reflection in the x-axis and then a vertical shift four units upward

Vertical shift two units downward

(d)
$$f(x) = (x - 2)^3 - 2$$

Horizontal shift two units to the right and a vertical shift two units downward

Vertical shift five units downward

Horizontal shift one unit to the right and a vertical shrink

13.
$$f(x) = 3x^3 - 9x + 1$$
; $g(x) = 3x^3$

- 17. $f(x) = 2x^2 3x + 1$ Degree: 2 Leading coefficient: 2 The degree is even and the leading coefficient is positive. The graph rises to the left and right.
- **21.** $f(x) = -2.1x^5 + 4x^3 2$ Degree: 5

Leading coefficient: -2.1

The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right.

25. $h(t) = -\frac{2}{3}(t^2 - 5t + 3)$ Degree: 2 Leading coefficient: $-\frac{2}{3}$

The degree is even and the leading coefficient is negative. The graph falls to the left and right.

29.
$$h(t) = t^2 - 6t + 9$$

= $(t - 3)^2$
 $t = 3$

33.
$$f(t) = t^3 - 4t^2 + 4t$$

= $t(t - 2)^2$
 $t = 0, 2$

(b) $x \approx 3.732, 0.268$

19.
$$g(x) = 5 - \frac{7}{2}x - 3x^2$$

Degree: 2
Leading coefficient: -3
The degree is even and the leading coefficient
is negative. The graph falls to the left and right.

23. $f(x) = 6 - 2x + 4x^2 - 5x^3$ Degree: 3 Leading coefficient: -5 The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right.

27.
$$f(x) = x^2 - 25$$

= $(x + 5)(x - 5)$
 $x = \pm 5$

31.
$$f(x) = x^2 + x - 2$$

= $(x + 2)(x - 1)$
 $x = -2, 1$

35.
$$f(x) = \frac{1}{2}x^2 + \frac{5}{2}x - \frac{3}{2}$$
$$= \frac{1}{2}(x^2 + 5x - 3)$$
$$x = \frac{-5 \pm \sqrt{25 - 4(-3)}}{2} = -\frac{5}{2} \pm \frac{\sqrt{37}}{2}$$
$$\approx 0.5414, -5.5414$$

(c)
$$f(x) = 3x^2 - 12x + 3$$

= $3(x^2 - 4x + 1)$
 $x = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3}$

(b)
$$t = \pm 1$$

(c) $g(t) = \frac{1}{2}t^4 - \frac{1}{2}$
 $= \frac{1}{2}(t+1)(t-1)(t^2+1)$
 $t = \pm 1$

(b) 2.236, -2.236
(c)
$$f(x) = 2x^4 - 2x^2 - 40$$

 $= 2(x^2 + 4)(x + \sqrt{5})(x - \sqrt{5})$
 $x = \pm \sqrt{5}$

(c)
$$y = 4x^3 - 20x^2 + 25x$$

 $0 = 4x^3 - 20x^2 + 25x$
 $0 = x(2x - 5)^2$
 $x = 0 \text{ or } x = \frac{5}{2}$

(b)
$$x = 0, 1.414, -1.414$$

(c) $f(x) = x^5 + x^3 - 6x$
 $= x(x^4 + x^2 - 6)$
 $= x(x^2 + 3)(x^2 - 2)$
 $x = 0, \pm \sqrt{2}$

(b)
$$x = 4, 5, -5$$

(c) $f(x) = x^3 - 4x^2 - 25x + 100$
 $= x^2(x - 4) - 25(x - 4)$
 $= (x^2 - 25)(x - 4)$
 $= (x - 5)(x + 5)(x - 4)$
 $x = \pm 5, 4$

Relative maximum: (0, 1) Relative minimums: (1.225, -3.5), (-1.225, -3.5)

Relative maximum: (-0.324, 6.218) Relative minimum: (0.324, 5.782)

55.
$$f(x) = (x - 2)(x - (-6))$$

= $(x - 2)(x + 6)$
= $x^2 + 4x - 12$

Note: f(x) = a(x - 2)(x + 6) has zeros 2 and -6 for all nonzero real numbers a.

59.
$$f(x) = (x - 4)(x + 3)(x - 3)(x - 0)$$

= $(x - 4)(x^2 - 9)x$
= $x^4 - 4x^3 - 9x^2 + 36x$

Note: $f(x) = a(x^4 - 4x^3 - 9x^2 + 36x)$ has these zeros for all nonzero real numbers a.

63.
$$f(x) = (x - 2)[x - (4 + \sqrt{5})][x - (4 - \sqrt{5})]$$
$$= (x - 2)[(x - 4) - \sqrt{5}][(x - 4) + \sqrt{5}]$$
$$= (x - 2)[(x - 4)^2 - 5]$$
$$= x^3 - 10x^2 + 27x - 22$$

Note: $f(x) = a(x - 2)[(x - 4)^2 - 5]$ has these zeros for all nonzero real numbers a.

- 67. (a) The degree of f is even and the leading coefficient is $\frac{1}{4}$. The graph rises to the left and to the right.
 - (b) $f(t) = \frac{1}{4}(t^2 2t + 15)$ has no real zeros.

53. f(x) = (x - 0)(x - 12) $f(x) = x^2 - 12x$ Note: f(x) = a(x - 0)(x - 12) = ax(x - 12)has zeros 0 and 12 for all nonzero real numbers a.

57.
$$f(x) = (x - 0)[x - (-4)][x - (-3)]$$

= $x(x + 4)(x + 3)$
= $x^3 + 7x^2 + 12x$

Note: f(x) = ax(x + 4)(x + 3) has zeros 0, -4, -3 for all nonzero real numbers a.

61.
$$f(x) = [x - (1 + \sqrt{3})][x - (1 - \sqrt{3})]$$
$$= [(x - 1) - \sqrt{3}][(x - 1) + \sqrt{3}]$$
$$= (x - 1)^2 - (\sqrt{3})^2$$
$$= x^2 - 2x + 1 - 3$$
$$= x^2 - 2x - 2$$

Note: $f(x) = a(x^2 - 2x - 2)$ has these zeros for all nonzero real numbers a.

- **65.** (a) The degree of f is odd and the leading coefficient is 1. The graph falls to the left and rises to the right.
 - (b) $f(x) = x^3 9x = x(x^2 9) = x(x 3)(x + 3)$ zeros: 0, 3, -3

69. (a) The degree of f is odd and the leading coefficient is 1. The graph falls to the left and rises to the right.

(b)
$$f(x) = x^3 - 3x^2 = x^2(x - 3)$$
; zeros: 0, 3

(c)

71. (a) The degree of f is odd and the leading coefficient is 3. The graph falls to the left and rises to the right.

(b) $f(x) = 3x^3 - 15x^2 + 18x = 3x(x^2 - 5x + 6)$

- **75.** (a) The degree of f is odd and the leading coefficient is 1. The graph falls to the left and rises to the right.
 - (b) $f(x) = x^2(x 4)$; zeros: 0, 4

The function has three zeros. They are in the intervals (-1, 0), (1, 2) and (2, 3).

(b) -0.879, 1.347, 2.532

81.

The function has two zeros. They are in the intervals (-2, -1) and (0, 1).

73. (a) The degree of f is odd and the leading coefficient is -1. The graph rises to the left and falls to the right.

(b)
$$f(x) = -x^3 - 5x^2 = x^2(-x - 5)$$

zeros: 0, -5
, (d)
$$y$$
 5
 -15 -10 5 10

77. (a) The degree of g is even (4) and the leading coefficient is $-\frac{1}{4}$. The graph falls to the left and to the right.

Х	Yl	х	Yl	х	Yl
-0.9	-0.159	1.3	0.127	2.5	-0.125
-0.89	-0.0813	1.31	0.09979	2.51	-0.087
-0.88	-0.0047	1.32	0.07277	2.52	-0.0482
-0.87	-0.0708	1.33	0.04594	2.53	-0.0084
-0.86	-0.14514	1.34	0.0193	2.54	0.03226
-0.85	-0.21838	1.35	-0.0071	2.55	0.07388
-0.84	-0.2905	1.36	-0.0333	2.56	0.11642

(a)	[
(C)	х	Y1
	-1.6	0.2768
	-1.59	0.09515
	-1.58	-0.0812
	-1.57	-0.2524
	-1.56	-0.4184
	-1.55	-0.5795
	-1.54	-0.7356

(c)

x	Yl
0.75	-0.3633
0.76	-0.2432
0.77	-0.1193
0.78	0.00866
0.79	0.14066
0.80	0.2768
0.81	0.41717

x = 6 when V(x) is maximum.

97. The point of diminishing returns (where the graph changes from curving upward to curving downward) occurs when x = 200. The point is (200, 160) which corresponds to spending \$2,000,000 on advertising to obtain a revenue of \$160 million.

99. (a)
$$y = 0.003x^4 - 0.024x^3 + 0.020x^2 + 0.113x$$

(c) The constant term should be zero. Yes, the model has zero as its constant term.

101. False. A fourth degree polynomial can have at most three turning points.

103.
$$f(x) = x^4$$
; $f(x)$ is even.

(a) g(x) = f(x) + 2Vertical shift two units upward g(-x) = f(-x) + 2= f(x) + 2= g(x)Even

(c) $g(x) = f(-x) = (-x)^4 = x^4$ Reflection in the y-axis

- The graph looks the same. Even
- (e) $g(x) = f(\frac{1}{2}x) = \frac{1}{16}x^4$ Vertical shrink Even
- (g) $g(x) = f(x^{3/4}) = (x^{3/4}) = x^3$ Odd
- **105.** $(g f)(3) = g(3) f(3) = 8(3)^2 [14(3) 3]$ = 72 - 39 = 33

- (b) g(x) = f(x + 2)Horizontal shift two units to the left Neither odd nor even
- (d) $g(x) = -f(x) = -x^4$ Reflection in the x-axis Even
- (f) $g(x) = \frac{1}{2}f(x) = \frac{1}{2}x^4$ Vertical shrink Even
- (h) $g(x) = (f \circ f)(x) = f(f(x)) = f(x^4) = f(x^4)^4 = x^{16}$ Even

107.
$$\left(\frac{f}{g}\right)(-1.5) = \frac{f(-1.5)}{g(-1.5)} = \frac{-24}{18} = -\frac{4}{3}$$

109.
$$(g \circ f)(0) = g(f(0)) = g(-3) = 8(-3)^2 = 72$$