Section 2.2 Polynomial Functions of Higher Degree

You should know the following basic principles about polynomials.

- $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ is a polynomial function of degree n .
- If f is of odd degree and
(a) $a_{n}>0$, then

1. $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.
2. $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$.
(b) $a_{n}<0$, then
3. $f(x) \rightarrow-\infty$ as $x \rightarrow \infty$.
4. $f(x) \rightarrow \infty$ as $x \rightarrow-\infty$.

- If f is of even degree and
(a) $a_{n}>0$, then

1. $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.
2. $f(x) \rightarrow \infty$ as $x \rightarrow-\infty$.
(b) $a_{n}<0$, then
3. $f(x) \rightarrow-\infty$ as $x \rightarrow \infty$.
4. $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$.

- The following are equivalent for a polynomial function.
(a) $x=a$ is a zero of a function.
(b) $\mathrm{x}=\mathrm{a}$ is a solution of the polynomial equation $f(x)=0$.
(c) $(x-a)$ is a factor of the polynomial.
(d) $(a, 0)$ is an x-intercept of the graph of f.
- A polynomial of degree n has at most n distinct zeros.
- If f is a polynomial function such that $\mathrm{a}<\mathrm{b}$ and $f(a) \neq f(b)$, then f takes on every value between $f(a)$ and $f(b)$ in the interval $[a, b]$.
- If you can find a value where a polynomial is positive and another value where it is negative, then there is at least one real zero between the values.

Solutions to Odd-Numbered Exercises

1. $f(x)=-2 x+3$ is a line with y -intercept $(0,3)$. Matches graph (f$)$.
2. $f(x)=-2 x^{2}-5 x$ is a parabola with x-intercepts $(0,0)$ and $\left(-\frac{5}{2}, 0\right)$ and opens downward. Matches graph (c).
3. $f(x)=-\frac{1}{4} x^{4}+3 x^{2}$ has intercepts $(0,0)$ and $(\pm 2 \sqrt{3}, 0)$. Matches graph (e).
4. $f(x)=x^{4}+2 x^{3}$ has intercepts $(0,0)$ and $(-2,0)$. Matches graph (g).
5. $y=x^{3}$
(a) $f(x)=(x-2)^{3}$
(b) $f(x)=x^{3}-2$

Vertical shift two units downward
(d) $f(x)=(x-2)^{3}-2$

Horizontal shift two units to the right and a vertical shift two units downward
11. $y=x^{4}$
(a) $f(x)=(x+5)^{4}$

(b) $f(x)=x^{4}-5$

Horizontal shift five units to the left
(c) $f(x)=4-x^{4}$

Reflection in the x -axis and then a vertical shift four units upward

Vertical shift five units downward
(d) $f(x)=\frac{1}{2}(x-1)^{4}$

Horizontal shift one unit to the right and a vertical shrink
13. $f(x)=3 x^{3}-9 x+1 ; g(x)=3 x^{3}$

17. $f(x)=2 x^{2}-3 x+1$

Degree: 2
Leading coefficient: 2
The degree is even and the leading coefficient is positive. The graph rises to the left and right.
21. $f(x)=-2.1 x^{5}+4 x^{3}-2$

Degree: 5
Leading coefficient: -2.1
The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right.
25. $h(t)=-\frac{2}{3}\left(t^{2}-5 t+3\right)$

Degree: 2
Leading coefficient: $-\frac{2}{3}$
The degree is even and the leading coefficient is negative. The graph falls to the left and right.
29. $h(t)=t^{2}-6 t+9$

$$
\begin{aligned}
& =(t-3)^{2} \\
t & =3
\end{aligned}
$$

33. $f(t)=t^{3}-4 t^{2}+4 t$

$$
=t(t-2)^{2}
$$

$$
t=0,2
$$

37. (a)

(b) $x \approx 3.732,0.268$
38. $f(x)=-\left(x^{4}-4 x^{3}+16 x\right) ; g(x)=-x^{4}$

39. $g(x)=5-\frac{7}{2} x-3 x^{2}$

Degree: 2
Leading coefficient: -3
The degree is even and the leading coefficient is negative. The graph falls to the left and right.
23. $f(x)=6-2 x+4 x^{2}-5 x^{3}$

Degree: 3
Leading coefficient: -5
The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right.
27. $f(x)=x^{2}-25$

$$
\begin{aligned}
& =(x+5)(x-5) \\
x & = \pm 5
\end{aligned}
$$

31. $f(x)=x^{2}+x-2$

$$
\begin{aligned}
& =(x+2)(x-1) \\
x & =-2,1
\end{aligned}
$$

35. $f(x)=\frac{1}{2} x^{2}+\frac{5}{2} x-\frac{3}{2}$

$$
=\frac{1}{2}\left(x^{2}+5 x-3\right)
$$

$$
x=\frac{-5 \pm \sqrt{25-4(-3)}}{2}=-\frac{5}{2} \pm \frac{\sqrt{37}}{2}
$$

$$
\approx 0.5414,-5.5414
$$

(c) $f(x)=3 x^{2}-12 x+3$
$=3\left(x^{2}-4 x+1\right)$
$x=\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}$
39. (a)

(b) $t= \pm 1$
(c) $g(t)=\frac{1}{2} t^{4}-\frac{1}{2}$

$$
=\frac{1}{2}(t+1)(t-1)\left(t^{2}+1\right)
$$

$$
t= \pm 1
$$

43. (a)

(b) 2.236, - 2.236
(c) $f(x)=2 x^{4}-2 x^{2}-40$

$$
\begin{aligned}
\quad & =2\left(x^{2}+4\right)(x+\sqrt{5})(x-\sqrt{5}) \\
x= & \pm \sqrt{5}
\end{aligned}
$$

41. (a)

(b) $x=0,1.414,-1.414$
(c) $f(x)=x^{5}+x^{3}-6 x$
$=x\left(x^{4}+x^{2}-6\right)$
$=x\left(x^{2}+3\right)\left(x^{2}-2\right)$
$x=0, \pm \sqrt{2}$
42. (a)

(b) $x=4,5,-5$
(c) $f(x)=x^{3}-4 x^{2}-25 x+100$
$=x^{2}(x-4)-25(x-4)$
$=\left(x^{2}-25\right)(x-4)$
$=(x-5)(x+5)(x-4)$

$$
x= \pm 5,4
$$

47. (a)

(b) x-intercepts: $(0,0),\left(\frac{5}{2}, 0\right)$
(c) $y=4 x^{3}-20 x^{2}+25 x$
$0=4 x^{3}-20 x^{2}+25 x$
$0=x(2 x-5)^{2}$
$x=0$ or $x=\frac{5}{2}$
48.

Relative maximum: $(0,1)$
Relative minimums: $(1.225,-3.5),(-1.225,-3.5)$
51.

Relative maximum: $(-0.324,6.218)$
Relative minimum: $(0.324,5.782)$

$$
\text { 55. } \begin{aligned}
f(x) & =(x-2)(x-(-6)) \\
& =(x-2)(x+6) \\
& =x^{2}+4 x-12
\end{aligned}
$$

Note: $f(x)=a(x-2)(x+6)$ has zeros 2 and -6 for all nonzero real numbers a.
59. $f(x)=(x-4)(x+3)(x-3)(x-0)$

$$
\begin{aligned}
& =(x-4)\left(x^{2}-9\right) x \\
& =x^{4}-4 x^{3}-9 x^{2}+36 x
\end{aligned}
$$

Note: $f(x)=a\left(x^{4}-4 x^{3}-9 x^{2}+36 x\right)$ has these zeros for all nonzero real numbers a.
63. $f(x)=(x-2)[x-(4+\sqrt{5})][x-(4-\sqrt{5})]$

$$
\begin{aligned}
& =(x-2)[(x-4)-\sqrt{5}][(x-4)+\sqrt{5}] \\
& =(x-2)\left[(x-4)^{2}-5\right] \\
& =x^{3}-10 x^{2}+27 x-22
\end{aligned}
$$

Note: $f(x)=a(x-2)\left[(x-4)^{2}-5\right]$ has these zeros for all nonzero real numbers a.
67. (a) The degree of f is even and the leading coefficient is $\frac{1}{4}$. The graph rises to the left and to the right.
(b) $f(t)=\frac{1}{4}\left(t^{2}-2 t+15\right)$ has no real zeros.
(c), (d)

53. $f(x)=(x-0)(x-12)$
$f(x)=x^{2}-12 x$
Note: $f(x)=a(x-0)(x-12)=a x(x-12)$ has zeros 0 and 12 for all nonzero real numbers a.
57. $f(x)=(x-0)[x-(-4)][x-(-3)]$

$$
=x(x+4)(x+3)
$$

$$
=x^{3}+7 x^{2}+12 x
$$

Note: $f(x)=a x(x+4)(x+3)$ has zeros $0,-4,-3$ for all nonzero real numbers a.
61. $f(x)=[x-(1+\sqrt{3})][x-(1-\sqrt{3})]$
$=[(x-1)-\sqrt{3}][(x-1)+\sqrt{3}]$
$=(x-1)^{2}-(\sqrt{3})^{2}$
$=x^{2}-2 x+1-3$
$=x^{2}-2 x-2$
Note: $f(x)=a\left(x^{2}-2 x-2\right)$ has these zeros for all nonzero real numbers a.
65. (a) The degree of f is odd and the leading coefficient is 1 . The graph falls to the left and rises to the right.
(b) $f(x)=x^{3}-9 x=x\left(x^{2}-9\right)=x(x-3)(x+3)$ zeros: $0,3,-3$
(c), (d)

69. (a) The degree of f is odd and the leading coefficient is 1 . The graph falls to the left and rises to the right.
(b) $f(x)=x^{3}-3 x^{2}=x^{2}(x-3)$; zeros: 0, 3
(c), (d)

71. (a) The degree of f is odd and the leading coefficient is 3 . The graph falls to the left and rises to the right.
(b) $f(x)=3 x^{3}-15 x^{2}+18 x=3 x\left(x^{2}-5 x+6\right)$

$$
=3 x(x-2)(x-3)
$$

(c), (d)

75. (a) The degree of f is odd and the leading coefficient is 1 . The graph falls to the left and rises to the right.
(b) $f(x)=x^{2}(x-4)$; zeros: 0,4
(c), (d)

73. (a) The degree of f is odd and the leading coefficient is -1 . The graph rises to the left and falls to the right.
(b) $f(x)=-x^{3}-5 x^{2}=x^{2}(-x-5)$ zeros: $0,-5$
(c), (d)

77. (a) The degree of g is even (4) and the leading coefficient is $-\frac{1}{4}$. The graph falls to the left and to the right.
(b) $g(t)=-\frac{1}{4}(t-2)^{2}(t+2)$; zeros: $2,-2$
(c)

79. $f(x)=x^{3}-3 x^{2}+3$
(a)

The function has three zeros. They are in the intervals $(-1,0),(1,2)$ and $(2,3)$.
(b) $-0.879,1.347,2.532$
(b) $-1.585,0.779$
(c)

x	Y 1
-0.9	-0.159
-0.89	-0.0813
-0.88	-0.0047
-0.87	-0.0708
-0.86	-0.14514
-0.85	-0.21838
-0.84	-0.2905

x	Y 1
1.3	0.127
1.31	0.09979
1.32	0.07277
1.33	0.04594
1.34	0.0193
1.35	-0.0071
1.36	-0.0333

x	Yl
2.5	-0.125
2.51	-0.087
2.52	-0.0482
2.53	-0.0084
2.54	0.03226
2.55	0.07388
2.56	0.11642

81. $g(x)=3 x^{4}+4 x^{3}-3$
(a)

The function has two zeros. They are
in the intervals $(-2,-1)$ and $(0,1)$.
The function has two zeros. They are
in the intervals $(-2,-1)$ and $(0,1)$.
(c)

x	$Y 1$
-1.6	0.2768
-1.59	0.09515
-1.58	-0.0812
-1.57	-0.2524
-1.56	-0.4184
-1.55	-0.5795
-1.54	-0.7356

x	Y 1
0.75	-0.3633
0.76	-0.2432
0.77	-0.1193
0.78	0.00866
0.79	0.14066
0.80	0.2768
0.81	0.41717

83. $f(x)=-\frac{3}{2}$

Horizontal line
87.

No symmetry
Two x-intercepts
91. $f(x)=x^{3}-4 x=x(x+2)(x-2)$

Symmetric to origin
Three x-intercepts

95. (a) and (b)
Height, x

Length and Width

$$
36-2(1)
$$

$$
36-2(2)
$$

$$
36-2(3)
$$

$$
36-2(4)
$$

$$
36-2(5)
$$

$$
36-2(6)
$$

$$
36-2(7)
$$

(c) Volume $=$ length \times width \times height

Because the box is made from a square, length $=$ width.
Thus:
Volume $=(\text { length })^{2} \times$ height

$$
=(36-2 x)^{2} x
$$

Domain: $\quad 0<36-2 x<36$

$$
\begin{aligned}
-36 & <-2 x<0 \\
18 & >x>0
\end{aligned}
$$

Volume, V

$$
\begin{aligned}
& 1[36-2(1)]^{2}=1156 \\
& 2[36-2(2)]^{2}=2048 \\
& 3[36-2(3)]^{2}=2700 \\
& 4[36-2(4)]^{2}=3136 \\
& 5[36-2(5)]^{2}=3380 \\
& 6[36-2(6)]^{2}=3456 \\
& 7[36-2(7)]^{2}=3388
\end{aligned}
$$

(d)

$x=6$ when $V(x)$ is maximum.
97. The point of diminishing returns (where the graph changes from curving upward to curving downward) occurs when $x=200$. The point is (200, 160) which corresponds to spending $\$ 2,000,000$ on advertising to obtain a revenue of $\$ 160$ million.
99. (a) $y=0.003 x^{4}-0.024 x^{3}+0.020 x^{2}+0.113 x$
(b)

(c) The constant term should be zero. Yes, the model has zero as its constant term.
101. False. A fourth degree polynomial can have at most three turning points.
103. $f(x)=x^{4} ; f(x)$ is even.

$$
\text { (a) } \begin{aligned}
& g(x)=f(x)+2 \\
& \text { Vertical shift two units upward } \\
& \qquad \begin{aligned}
g(-x) & =f(-x)+2 \\
& =f(x)+2 \\
& =g(x)
\end{aligned}
\end{aligned}
$$

Even
(c) $g(x)=f(-x)=(-x)^{4}=x^{4}$

Reflection in the y-axis
The graph looks the same.
Even
(e) $g(x)=f\left(\frac{1}{2} x\right)=\frac{1}{16} x^{4}$

Vertical shrink
Even
(g) $g(x)=f\left(x^{3 / 4}\right)=\left(x^{3 / 4}\right)=x^{3}$

Odd
105. $(g-f)(3)=g(3)-f(3)=8(3)^{2}-[14(3)-3]$

$$
=72-39=33
$$

109. $(g \circ f)(0)=g(f(0))=g(-3)=8(-3)^{2}=72$
(b) $g(x)=f(x+2)$

Horizontal shift two units to the left
Neither odd nor even
(d) $g(x)=-f(x)=-x^{4}$

Reflection in the x -axis Even
(f) $g(x)=\frac{1}{2} f(x)=\frac{1}{2} x^{4}$

Vertical shrink Even
(h) $g(x)=(f \circ f)(x)=f(f(x))=f\left(x^{4}\right)=f\left(x^{4}\right)^{4}=x^{16}$ Even
107. $\left(\frac{f}{g}\right)(-1.5)=\frac{f(-1.5)}{g(-1.5)}=\frac{-24}{18}=-\frac{4}{3}$

