85. True. $(-i\sqrt{6})^4 - (-i\sqrt{6})^2 + 14 = 36 + 6 + 14 = 56$ **87.** (a) $i^{40} = (i^4)^{10} = 1^{10} = 1$ **89.** $(a + bi)(a - bi) = a^2 + abi - abi - b^2i^2 = a^2 + b^2$ which is a real number (b) $i^{25} = (i^{24})(i) = (i^4)^6(i) = 1(i) = i$ (c) $i^{50} = (i^{48})(i^2) = (i^{4)^{12}}(-1) = 1(-1) = -1$ (d) $i^{67} = (i^{64})(i^3) = (i^4)^{16}(i^2)(i) = 1(-1)(i) = -i$ **91.** 2x + 3y = 53y = -2x + 5 $y = -\frac{2}{3}x + \frac{5}{3}$ Slope: $-\frac{2}{3}$ (a) Parallel line: $y - 3 = -\frac{2}{3}[x - (-8)]$ (b) Perpendicular line: $y - 3 = \frac{3}{2}[x - (-8)]$ 3y - 9 = -2x - 162y - 6 = 3x + 243y + 2x = -72y - 3x = 30**93.** $y = x^2 + 2x - 8$ Let y = 0: $x^2 + 2x - 8 = (x + 4)(x - 2) = 0 \implies x = -4, 2$. x-intercepts: (-4, 0), (2, 0)Let x = 0: y = -8. y-intercept: (0, -8)**94.** y = |x| - 1Let y = 0: $|x| = 1 \implies x = \pm 1$. x-intercepts: (1, 0), (-1, 0) Let x = 0: y = -1. y-intercept: (0, -1)

Section 2.5 The Fundamental Theorem of Algebra

- Vou should know that if f is a polynomial of degree n > 0, then f has at least one zero in the complex number system. (Fundamental Theorem of Algebra)
- Vou should know that if a + bi is a complex zero of a polynomial f, with real coefficients, then a bi is also a complex zero of f.
- You should know the difference between a factor that is irreducible over the rationals (such as $x^2 7$) and a factor that is irreducible over the reals (such as $x^2 + 9$).

Solutions to Odd-Numbered Exercises

1.
$$f(x) = x(x - 6)^2 = x(x - 6)(x - 6)$$

The three zeros are $x = 0$, $x = 6$, and $x = 6$.

The four zeros are x = 2, x = -4, x = -4, and

3. $g(x) = (x - 2)(x + 4)^3$

5. f(x) = (x + 6)(x + i)(x - i)

The three zeros are x = -6, x = -i, and x = i.

- x = -4.7. f(x) = (x - 2)(x + 3 - 5i)(x + 3 + 5i)
 - The three zeros are x = 2, x = -3 + 5i, and x = -3 5i.

9.
$$f(x) = x^3 - 4x^2 + x - 4 = x^2(x - 4) + 1(x - 4)$$

= $(x - 4)(x^2 + 1)$ zeros: $4, \pm i$

The only real zero of f(x) is x = 4. This corresponds to the *x*-intercept of (4, 0) on the graph.

13. $h(x) = x^2 - 4x + 1$

h has no rational zeros. By the Quadratic Formula, the zeros are $x = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3}$. $h(x) = \left[x - (2 + \sqrt{3})\right] \left[x - (2 - \sqrt{3})\right] = (x - 2 - \sqrt{3})(x - 2 + \sqrt{3})$

15.
$$f(x) = x^2 - 12x + 26$$

f has no rational zeros. By the Quadratic Formula, the zeros are

$$x = \frac{12 \pm \sqrt{(-12)^2 - 4(26)}}{2} = 6 \pm \sqrt{10}$$
$$f(x) = \left[x - \left(6 + \sqrt{10}\right)\right] \left[x - \left(6 - \sqrt{10}\right)\right]$$
$$= \left(x - 6 - \sqrt{10}\right) \left(x - 6 + \sqrt{10}\right)$$

19.
$$f(x) = x^4 - 81$$

= $(x^2 - 9)(x^2 + 9)$
= $(x + 3)(x - 3)(x + 3i)(x - 3i)$
The zeros of $f(x)$ are $x = \pm 3$ and $x = \pm 3i$.

23.
$$f(t) = t^3 - 3t^2 - 15t + 125$$

Possible rational zeros: $\pm 1, \pm 5, \pm 25, \pm 125$

By the Quadratic Formula, the zeros of

$$t^2 - 8t + 25$$
 are $t = \frac{8 \pm \sqrt{64 - 100}}{2} = 4 \pm 3i$.
The zeros of $f(t)$ are $t = -5$ and $t = 4 \pm 3i$.
 $f(t) = [t - (-5)][t - (4 + 3i)][t - (4 - 3i)]$
 $= (t + 5)(t - 4 - 3i)(t - 4 + 3i)$

11.
$$f(x) = x^4 + 4x^2 + 4 = (x^2 + 2)^2$$

zeros: $\pm \sqrt{2}i, \pm \sqrt{2}i$

f(x) has no real zeros and the graph of f(x) has no *x*-intercepts.

$$f(x) = x^{2} + \sqrt{5}$$

$$f(x) = x^{2} + 25$$

$$= (x + 5i)(x - 5i)$$

The zeros of f(x) are $x = \pm 5i$.

21. $f(z) = z^2 - 2z + 2$

f has no rational zeros. By the Quadratic Formula,

the zeros are
$$z = \frac{2 \pm \sqrt{4-8}}{2} = 1 \pm i$$

 $f(z) = [z - (1 + i)][z - (1 - i)]$
 $= (z - 1 - i)(z - 1 + i)$

$$25. \ f(x) = 16x^3 - 20x^2 - 4x + 15$$

The graph reveals one zero at $x = -\frac{3}{4}$.

By the Quadratic Formula, the zeros of $16x^2 - 32x + 20 = 4(4x^2 - 8x + 5)$ are

$$x = \frac{8 \pm \sqrt{64 - 80}}{8} = 1 \pm \frac{1}{2}i.$$

The zeros of f(x) are $x = -\frac{3}{4}$ and $x = 1 \pm \frac{1}{2}i$.

$$16\left(x+\frac{3}{4}\right)\left(x-1+\frac{1}{2}i\right)\left(x-1-\frac{1}{2}i\right)$$

27.
$$f(x) = x^4 + 10x^2 + 9$$

= $(x^2 + 1)(x^2 + 9)$
= $(x + i)(x - i)(x + 3i)(x - 3i)$
The zeros of $f(x)$ are $x = \pm i$ and $x = \pm 3i$.

29. $g(x) = x^4 - 4x^3 + 8x^2 - 16x + 16$ Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$

The zeros of g are 2, 2, and $\pm 2i$.

33. (a) $f(x) = x^2 - 14x + 46$. By the Quadratic Formula

(b) $f(x) = [x - (-7 + \sqrt{5})][x - (-7 - \sqrt{5})]$ = $(x + 7 - \sqrt{5})(x + 7 + \sqrt{5})$

31. $f(x) = 2x^4 + 5x^3 + 4x^2 + 5x + 2$

The graph reveals one zero at x = -2 and $x = -\frac{1}{2}$.

The zeros of $2x^2 + 2 = 2(x^2 + 1)$ are $x = \pm i$. The zeros of f(x) are $-2, -\frac{1}{2}, \pm i$. f(x) = (x + 2)(2x + 1)(x - i)(x + i)

35. (a) $f(x) = x^2 + 14x + 44$. By the Quadratic Formula, $x = \frac{-14 \pm \sqrt{14^2 - 4(44)}}{2} = -7 \pm \sqrt{5}$ The zeros are $-7 + \sqrt{5}$ and $-7 - \sqrt{5}$. (c) *x*-intercepts: $(-7 + \sqrt{5}, 0), (-7 - \sqrt{5}, 0)$

37. (a)
$$f(x) = x^3 - 11x + 150$$

= $(x + 6)(x^2 - 6x + 25)$.

Use the Quadratic Formula to find the zeros of $x^2 - 6x + 25$:

$$x = \frac{6 \pm \sqrt{(-6)^2 - 4(25)}}{2} = 3 \pm 4i.$$

The zeros are -6, 3 + 4i, and 3 - 4i.

- (b) f(x) = (x + 6)(x 3 + 4i)(x 3 4i)
- (c) x-intercept: (-6, 0)

41.
$$f(x) = (x - 1)(x - 5i)(x + 5i)$$

= $(x - 1)(x^2 + 25)$
= $x^3 - x^2 + 25x - 25$

Note: $f(x) = a(x^3 - x^2 + 25x - 25)$, where *a* is any nonzero real number, has the zero, 1 and $\pm 5i$.

45.
$$f(x) = (x - i)(x + i)(x - 6i)(x + 6i)$$

= $(x^2 + 1)(x^2 + 36)$
= $x^4 + 37x^2 + 36$

Note: $f(x) = a(x^4 + 37x^2 + 36)$, where *a* is any nonzero real number, has the zeros $\pm i$ and $\pm 6i$.

49.
$$f(x) = x^4 - 6x^2 - 7$$

(a) $f(x) = (x^2 - 7)(x^2 + 1)$
(b) $f(x) = (x - \sqrt{7})(x + \sqrt{7})(x^2 + 1)$
(c) $f(x) = (x - \sqrt{7})(x + \sqrt{7})(x + i)(x - i)$

(c) No x-intercepts

43.
$$f(x) = (x - 2)(x - 4 - i)(x - 4 + i)$$
$$= (x - 2)(x^{2} - 8x + 17)$$
$$= x^{3} - 10x^{2} + 33x - 34$$

Note: $f(x) = a(x^3 - 10x^2 + 33x - 34)$, where *a* is any nonzero real number, has these zeros.

47. If
$$1 + \sqrt{3}i$$
 is a zero, so is its conjugate $1 - \sqrt{3}i$.

$$f(x) = (x + 5)^2(x - 1 + \sqrt{3}i)(x - 1 - \sqrt{3}i)$$

$$= (x^2 + 10x + 25)(x^2 - 2x + 4)$$

$$= x^4 + 8x^3 + 9x^2 - 10x + 100$$

Note: $f(x) = a(x^4 + 8x^3 + 9x^2 - 10x + 100)$, where *a* is any nonzero real number, has these

51.
$$f(x) = x^4 - 2x^3 - 3x^2 + 12x - 18$$

(a) $f(x) = (x^2 - 6)(x^2 - 2x + 3)$
(b) $f(x) = (x + \sqrt{6})(x - \sqrt{6})(x^2 - 2x + 3)$
(c) $f(x) = (x + \sqrt{6})(x - \sqrt{6})(x - 1 - \sqrt{2}i)(x - 1 + \sqrt{2}i)$

53.
$$f(x) = 2x^3 + 3x^2 + 50x + 75$$

Since 5i is a zero, so is -5i.

5 <i>i</i>	2	3	50	75
		10 <i>i</i>	-50 + 15i	-75
	2	3 + 10 <i>i</i>	15 <i>i</i>	0
-5 <i>i</i>	2	3 + 10i	15 <i>i</i>	
		-10 <i>i</i>	-15i	
	2	3	0	

The zero of 2x + 3 is $x = -\frac{3}{2}$. The zeros of f are $x = -\frac{3}{2}$ and $x = \pm 5i$.

55.
$$g(x) = x^3 - 7x^2 - x + 87$$
. Since $5 + 2i$ is a zero, so is $5 - 2i$.

5 + 2i	1	-7	-1	87
		5 + 2i	-14 + 6i	-87
	1	-2 + 2i	-15 + 6i	0
5 – 2 <i>i</i>	1	$\begin{array}{r} -2 + 2i \\ 5 - 2i \end{array}$	-15 + 6i $15 - 6i$	
	1	3	0	

The zero of x + 3 is x = -3. The zeros of f are -3, $5 \pm 2i$.

59.
$$h(x) = 8x^3 - 14x^2 + 18x - 9$$
. Since $\frac{1}{2}(1 - \sqrt{5}i)$
is a zero, so is $\frac{1}{2}(1 + \sqrt{5}i)$.
 $\frac{1}{2}(1 - \sqrt{5}i) \begin{vmatrix} 8 & -14 & 18 \\ 4 - 4\sqrt{5}i & -15 + 3\sqrt{5}i \end{vmatrix}$

The zero of 8x - 6 is $x = \frac{3}{4}$. The zeros of *h* are $x = \frac{3}{4}, \frac{1}{2}(1 \pm \sqrt{5}i)$.

Alternate Solution

Since $x = \pm 5i$ are zeros of f(x), $(x + 5i)(x - 5i) = x^2 + 25$ is a factor of f(x). By long division we have:

$$\begin{array}{r} 2x + 3 \\ x^2 + 0x + 25) \overline{2x^3 + 3x^2 + 50x + 75} \\ \underline{2x^3 + 0x^2 + 50x} \\ 3x^2 + 0x + 75 \\ \underline{3x^2 + 0x + 75} \\ 0 \end{array}$$

Thus, $f(x) = (x^2 + 25)(2x + 3)$ and the zeros of *f* are $x = \pm 5i$ and $x = -\frac{3}{2}$.

57. $h(x) = 3x^3 - 4x^2 + 8x + 8$. Since $1 - \sqrt{3}i$ is a zero, so is $1 + \sqrt{3}i$. $1 - \sqrt{3}i \begin{vmatrix} 3 & -4 & 8 & 8 \\ 3 - 3\sqrt{3}i & -10 - 2\sqrt{3}i & -8 \\ \hline 3 & -1 - 3\sqrt{3}i & -2 - 2\sqrt{3}i & 0 \\ 1 + \sqrt{3}i \begin{vmatrix} 3 & -1 - 3\sqrt{3}i & -2 - 2\sqrt{3}i \\ 3 & -1 - 3\sqrt{3}i & -2 - 2\sqrt{3}i \\ \hline 3 + 3\sqrt{3}i & 2 + 2\sqrt{3}i \\ \hline 3 & 2 & 0 \end{vmatrix}$

The zero of
$$3x + 2$$
 is $x = -\frac{2}{3}$.
The zeros of *h* are $x = -\frac{2}{3}$, $1 \pm \sqrt{3}i$.

- **61.** (a) The root feature yields the real roots 1 and 2, and the complex roots $-3 \pm 1.414i$.
 - (b) By synthetic division,

-9

9 0

1	1	3	-5	-21	22
		1	4	-1	-22
	1	4	-1	-22	0
2	1	4	-1	-22	
		2	12	22	
	1	6	11	0	

The complex roots of $x^2 + 6x + 11$ are $x = \frac{-6 \pm \sqrt{6^2 - 4(11)}}{2} = -3 \pm \sqrt{2}i.$

- 63. (a) The root feature yields the real root 0.75, and the complex roots $0.5 \pm 1.118i$.
 - (b) By synthetic division,

The complex roots of $8x^2 - 8x + 12$ are

$$x = \frac{8 \pm \sqrt{64 - 4(8)(12)}}{2(8)} = \frac{1}{2} \pm \frac{\sqrt{5}}{2}i.$$

67. False, a third degree polynomial must have at least one real zero.

65.
$$-16t^2 + 48t = 64$$
, $0 \le t \le 3$
 $-16t^2 + 48t - 64 = 0$
 $t = \frac{-48 \pm \sqrt{1792}i}{-32}$

Since the roots are imaginary, the ball never will reach a height of 64 feet. You can verify this graphically by observing that $y_1 = -16t^2 + 48t$ and $y_2 = 64$ do not intersect.

69. $f(x) = x^4 - 4x^2 + k$

- (a) *f* has four real zeros for 0 < k < 4.
- (b) f has two real zeros each of multiplicity 2 for k = 4: $f(x) = x^4 4x^2 + 4 = (x^2 2)^2$.
- (c) *f* has two real zeros and two complex zeros if *k* < 0.
- (d) f has four complex zeros if k > 4.

71.
$$f(x) = (x - \sqrt{bi})(x + \sqrt{bi}) = x^2 + b$$

73. $f(x) = x^2 - 7x - 8 = (x^2 - 7x + \frac{49}{4}) - 8 - \frac{49}{4}$
 $= (x - \frac{7}{2})^2 - \frac{81}{4}$
Vertex: $(\frac{7}{2}, -\frac{81}{4})$
 $f(x) = (x - 8)(x + 1)$
Intercepts: $(8, 0), (-1, 0), (0, -8)$

75.
$$f(x) = 6x^2 + 5x - 6 = (3x - 2)(2x + 3)$$

Intercepts: $(\frac{2}{3}, 0), (-\frac{3}{2}, 0), (0, -6)$
 $f(x) = 6x^2 + 5x - 6$
 $= 6(x^2 + \frac{5}{6}x + \frac{25}{144}) - 6 - \frac{25}{24}$
 $= 6(x + \frac{5}{12})^2 + \frac{169}{24}$
Vertex: $(-\frac{5}{12}, -\frac{169}{24})$

77.
$$12 - (-7 + 5i) + (-2 + 3i) = 17 - 2i$$

79. $(-3 - 8i)^2 = 9 + 48i + (-8i)^2$ = 9 + 48i - 64 = -55 + 48i