85. True. $(-i \sqrt{6})^{4}-(-i \sqrt{6})^{2}+14=36+6+14=56$
86. (a) $i^{40}=\left(i^{4}\right)^{10}=1^{10}=1$
(b) $i^{25}=\left(i^{24}\right)(i)=\left(i^{4}\right)^{6}(i)=1(i)=i$
(c) $i^{50}=\left(i^{48}\right)\left(i^{2}\right)=\left(i^{4}\right)^{12}(-1)=1(-1)=-1$
(d) $i^{67}=\left(i^{64}\right)\left(i^{3}\right)=\left(i^{4}\right)^{16}\left(i^{2}\right)(i)=1(-1)(i)=-i$
87. $2 x+3 y=5$

$$
\begin{aligned}
3 y & =-2 x+5 \\
y & =-\frac{2}{3} x+\frac{5}{3} \quad \text { Slope: }-\frac{2}{3}
\end{aligned}
$$

(a) Parallel line: $\quad y-3=-\frac{2}{3}[x-(-8)]$
(b) Perpendicular line:

$$
\begin{aligned}
y-3 & =\frac{3}{2}[x-(-8)] \\
2 y-6 & =3 x+24 \\
2 y-3 x & =30
\end{aligned}
$$

93. $y=x^{2}+2 x-8$

Let $y=0: x^{2}+2 x-8=(x+4)(x-2)=0 \Rightarrow x=-4$, 2 . x-intercepts: $(-4,0),(2,0)$
Let $x=0: y=-8 . y$-intercept: $(0,-8)$
94. $y=|x|-1$

Let $y=0:|x|=1 \Rightarrow x= \pm 1 . x$-intercepts: $(1,0),(-1,0)$
Let $x=0: y=-1 . y$-intercept: $(0,-1)$

Section 2.5 The Fundamental Theorem of Algebra

- You should know that if f is a polynomial of degree $n>0$, then f has at least one zero in the complex number system. (Fundamental Theorem of Algebra)
- You should know that if $a+b i$ is a complex zero of a polynomial f, with real coefficients, then $a-b i$ is also a complex zero of f.
- You should know the difference between a factor that is irreducible over the rationals (such as $x^{2}-7$) and a factor that is irreducible over the reals (such as $x^{2}+9$).

Solutions to Odd-Numbered Exercises

1. $f(x)=x(x-6)^{2}=x(x-6)(x-6)$

The three zeros are $x=0, x=6$, and $x=6$.
5. $f(x)=(x+6)(x+i)(x-i)$

The three zeros are $x=-6, x=-i$, and $x=i$.
3. $g(x)=(x-2)(x+4)^{3}$

The four zeros are $x=2, x=-4, x=-4$, and $x=-4$.
7. $f(x)=(x-2)(x+3-5 i)(x+3+5 i)$

The three zeros are $x=2, x=-3+5 i$, and $x=-3-5 i$.
9. $f(x)=x^{3}-4 x^{2}+x-4=x^{2}(x-4)+1(x-4)$

$$
=(x-4)\left(x^{2}+1\right) \quad \text { zeros: } 4, \pm i
$$

The only real zero of $f(x)$ is $x=4$. This corresponds to the x-intercept of $(4,0)$ on the graph.
11. $f(x)=x^{4}+4 x^{2}+4=\left(x^{2}+2\right)^{2}$
zeros: $\pm \sqrt{2} i, \pm \sqrt{2} i$
$f(x)$ has no real zeros and the graph of $f(x)$ has no x-intercepts.
13. $h(x)=x^{2}-4 x+1$
h has no rational zeros. By the Quadratic Formula, the zeros are $x=\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}$.
$h(x)=[x-(2+\sqrt{3})][x-(2-\sqrt{3})]=(x-2-\sqrt{3})(x-2+\sqrt{3})$
15. $f(x)=x^{2}-12 x+26$
f has no rational zeros. By the Quadratic Formula, the zeros are

$$
\begin{aligned}
x & =\frac{12 \pm \sqrt{(-12)^{2}-4(26)}}{2}=6 \pm \sqrt{10} . \\
f(x) & =[x-(6+\sqrt{10})][x-(6-\sqrt{10})] \\
& =(x-6-\sqrt{10})(x-6+\sqrt{10})
\end{aligned}
$$

19. $f(x)=x^{4}-81$

$$
\begin{aligned}
& =\left(x^{2}-9\right)\left(x^{2}+9\right) \\
& =(x+3)(x-3)(x+3 i)(x-3 i)
\end{aligned}
$$

The zeros of $f(x)$ are $x= \pm 3$ and $x= \pm 3 i$.
23. $f(t)=t^{3}-3 t^{2}-15 t+125$

Possible rational zeros: $\pm 1, \pm 5, \pm 25, \pm 125$

$$
\begin{array}{r}
-5 \\
\begin{array}{rrrr}
1 & -3 & -15 & 125 \\
& -5 & 40 & -125 \\
1 & -8 & 25 & 0
\end{array}, \frac{1}{2}
\end{array}
$$

By the Quadratic Formula, the zeros of
$t^{2}-8 t+25$ are $t=\frac{8 \pm \sqrt{64-100}}{2}=4 \pm 3 i$.
The zeros of $f(t)$ are $t=-5$ and $t=4 \pm 3 i$.

$$
\begin{aligned}
f(t) & =[t-(-5)][t-(4+3 i)][t-(4-3 i)] \\
& =(t+5)(t-4-3 i)(t-4+3 i)
\end{aligned}
$$

17. $f(x)=x^{2}+25$

$$
=(x+5 i)(x-5 i)
$$

The zeros of $f(x)$ are $x= \pm 5 i$.
21. $f(z)=z^{2}-2 z+2$
f has no rational zeros. By the Quadratic Formula, the zeros are $z=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i$.

$$
\begin{aligned}
f(z) & =[z-(1+i)][z-(1-i)] \\
& =(z-1-i)(z-1+i)
\end{aligned}
$$

25. $f(x)=16 x^{3}-20 x^{2}-4 x+15$

The graph reveals one zero at $x=-\frac{3}{4}$.

$-\frac{3}{4} |$| 16 | -20 | -4 | 15 |
| ---: | ---: | ---: | ---: |
| | -12 | 24 | -15 |
| 16 | -32 | 20 | 0 |

By the Quadratic Formula, the zeros of $16 x^{2}-32 x+20=4\left(4 x^{2}-8 x+5\right)$ are
$x=\frac{8 \pm \sqrt{64-80}}{8}=1 \pm \frac{1}{2} i$.
The zeros of $f(x)$ are $x=-\frac{3}{4}$ and $x=1 \pm \frac{1}{2} i$.
$16\left(x+\frac{3}{4}\right)\left(x-1+\frac{1}{2} i\right)\left(x-1-\frac{1}{2} i\right)$
27. $f(x)=x^{4}+10 x^{2}+9$

$$
\begin{aligned}
& =\left(x^{2}+1\right)\left(x^{2}+9\right) \\
& =(x+i)(x-i)(x+3 i)(x-3 i)
\end{aligned}
$$

The zeros of $f(x)$ are $x= \pm i$ and $x= \pm 3 i$.
31. $f(x)=2 x^{4}+5 x^{3}+4 x^{2}+5 x+2$

The graph reveals one zero at $x=-2$ and $x=-\frac{1}{2}$.

$-2 |$| 2 | 5 | 4 | 5 | 2 |
| ---: | ---: | ---: | ---: | ---: |
| | -4 | -2 | -4 | -2 |
| 2 | 1 | 2 | 1 | 0 |
| 2 | 1 | 2 | 1 | |
| | 2 | 0 | 2 | 0 |

The zeros of $2 x^{2}+2=2\left(x^{2}+1\right)$ are $x= \pm i$.
The zeros of $f(x)$ are $-2,-\frac{1}{2}, \pm i$.
$f(x)=(x+2)(2 x+1)(x-i)(x+i)$
35. (a) $f(x)=x^{2}+14 x+44$. By the Quadratic Formula,

$$
x=\frac{-14 \pm \sqrt{14^{2}-4(44)}}{2}=-7 \pm \sqrt{5}
$$

(b) $f(x)=[x-(-7+\sqrt{5})][x-(-7-\sqrt{5})]$

The zeros are $-7+\sqrt{5}$ and $-7-\sqrt{5}$.
(c) x-intercepts: $(-7+\sqrt{5}, 0),(-7-\sqrt{5}, 0)$
29. $g(x)=x^{4}-4 x^{3}+8 x^{2}-16 x+16$

Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$

2	1	-4	8	-16	16
2		1	-2	4	-8
-4	8	-16			
		2	0	8	
	0	4	0		

$g(x)=(x-2)(x-2)\left(x^{2}+4\right)$

$$
=(x-2)^{2}(x+2 i)(x-2 i)
$$

The zeros of g are 2,2 , and $\pm 2 i$.
33. (a) $f(x)=x^{2}-14 x+46$. By the Quadratic Formula

$$
x=\frac{14 \pm \sqrt{(-14)^{2}-4(46)}}{2}=7 \pm \sqrt{3} .
$$

The zeros are $7+\sqrt{3}$ and $7-\sqrt{3}$.
(b) $f(x)=[x-(7+\sqrt{3})][x-(7-\sqrt{3})]$

$$
=(x-7-\sqrt{3})(x-7+\sqrt{3})
$$

(c) x-intercepts: $(7+\sqrt{3}, 0)$ and $(7-\sqrt{3}, 0)$
(d)

$=(x+7-\sqrt{5})(x+7+\sqrt{5})$
(d)

37. (a) $f(x)=x^{3}-11 x+150$

$$
=(x+6)\left(x^{2}-6 x+25\right) .
$$

Use the Quadratic Formula to find the zeros of $x^{2}-6 x+25$:

$$
x=\frac{6 \pm \sqrt{(-6)^{2}-4(25)}}{2}=3 \pm 4 i .
$$

The zeros are $-6,3+4 i$, and $3-4 i$.
(b) $f(x)=(x+6)(x-3+4 i)(x-3-4 i)$
(c) x-intercept: $(-6,0)$
(d)

41. $f(x)=(x-1)(x-5 i)(x+5 i)$

$$
\begin{aligned}
& =(x-1)\left(x^{2}+25\right) \\
& =x^{3}-x^{2}+25 x-25
\end{aligned}
$$

Note: $f(x)=a\left(x^{3}-x^{2}+25 x-25\right)$,
where a is any nonzero real number, has the zero, 1 and $\pm 5 i$.
45. $f(x)=(x-i)(x+i)(x-6 i)(x+6 i)$

$$
\begin{aligned}
& =\left(x^{2}+1\right)\left(x^{2}+36\right) \\
& =x^{4}+37 x^{2}+36
\end{aligned}
$$

Note: $f(x)=a\left(x^{4}+37 x^{2}+36\right)$, where a is any nonzero real number, has the zeros $\pm i$ and $\pm 6 i$.
49. $f(x)=x^{4}-6 x^{2}-7$
(a) $f(x)=\left(x^{2}-7\right)\left(x^{2}+1\right)$
(b) $f(x)=(x-\sqrt{7})(x+\sqrt{7})\left(x^{2}+1\right)$
(c) $f(x)=(x-\sqrt{7})(x+\sqrt{7})(x+i)(x-i)$
39. (a) $f(x)=x^{4}+25 x^{2}+144$

$$
=\left(x^{2}+9\right)\left(x^{2}+16\right)
$$

The zeros are $\pm 3 i, \pm 4 i$.
(b) $f(x)=\left(x^{2}+9\right)\left(x^{2}+16\right)$

$$
=(x+3 i)(x-3 i)(x+4 i)(x-4 i)
$$

(c) No x-intercepts
(d)

43. $f(x)=(x-2)(x-4-i)(x-4+i)$

$$
\begin{aligned}
& =(x-2)\left(x^{2}-8 x+17\right) \\
& =x^{3}-10 x^{2}+33 x-34
\end{aligned}
$$

Note: $f(x)=a\left(x^{3}-10 x^{2}+33 x-34\right)$, where a is any nonzero real number, has these zeros.
47. If $1+\sqrt{3} i$ is a zero, so is its conjugate $1-\sqrt{3} i$.

$$
\begin{aligned}
f(x) & =(x+5)^{2}(x-1+\sqrt{3} i)(x-1-\sqrt{3} i) \\
& =\left(x^{2}+10 x+25\right)\left(x^{2}-2 x+4\right) \\
& =x^{4}+8 x^{3}+9 x^{2}-10 x+100
\end{aligned}
$$

Note: $f(x)=a\left(x^{4}+8 x^{3}+9 x^{2}-10 x+100\right)$, where a is any nonzero real number, has these
51. $f(x)=x^{4}-2 x^{3}-3 x^{2}+12 x-18$
(a) $f(x)=\left(x^{2}-6\right)\left(x^{2}-2 x+3\right)$
(b) $f(x)=(x+\sqrt{6})(x-\sqrt{6})\left(x^{2}-2 x+3\right)$
(c) $f(x)=$

$$
(x+\sqrt{6})(x-\sqrt{6})(x-1-\sqrt{2} i)(x-1+\sqrt{2} i)
$$

53. $f(x)=2 x^{3}+3 x^{2}+50 x+75$

Since $5 i$ is a zero, so is $-5 i$.

$$
\begin{array}{l|rrrr}
5 i & 2 & 3 & 50 & 75 \\
& & 10 i & -50+15 i & -75 \\
\hline
\end{array} \begin{array}{rrrr}
2 & 3+10 i & 15 i & 0 \\
-5 i & 2 & 3+10 i & 15 i \\
& & -10 i & -15 i \\
\cline { 2 - 4 } & 2 & 3 & 0
\end{array}
$$

The zero of $2 x+3$ is $x=-\frac{3}{2}$. The zeros of f are $x=-\frac{3}{2}$ and $x= \pm 5 i$.
55. $g(x)=x^{3}-7 x^{2}-x+87$. Since $5+2 i$ is a zero, so is $5-2 i$.

$$
\begin{array}{r}
5+2 i \\
5-2 i \\
\\
5
\end{array} \begin{array}{rrrr}
1 & -7 & -1 & 87 \\
& 5+2 i & -14+6 i & -87 \\
\hline
\end{array} \begin{array}{rrrr}
1 & -2+2 i & -15+6 i & 0 \\
1 & -2+2 i & -15+6 i \\
& 5-2 i & 15-6 i \\
\hline
\end{array}
$$

The zero of $x+3$ is $x=-3$.
The zeros of f are $-3,5 \pm 2 i$.
59. $h(x)=8 x^{3}-14 x^{2}+18 x-9$. Since $\frac{1}{2}(1-\sqrt{5} i)$
is a zero, so is $\frac{1}{2}(1+\sqrt{5} i)$.

$$
\begin{aligned}
& \begin{array}{rlrr}
\frac{1}{2}(1-\sqrt{5} i) & \begin{array}{rrrr}
8 & -14 & 18 & -9 \\
& 4-4 \sqrt{5} i & -15+3 \sqrt{5} i & 9 \\
\hline & 8 & -10-4 \sqrt{5} i & 3+3 \sqrt{5} i
\end{array} & 0
\end{array} \\
& \frac{1}{2}(1+\sqrt{5} i) \left\lvert\, \begin{array}{rrr}
8 & \begin{array}{r}
-10-4 \sqrt{5} i \\
4+4 \sqrt{5} i
\end{array} & \begin{array}{r}
3+3 \sqrt{5} i \\
-3-3 \sqrt{5} i
\end{array} \\
8 & -6 & 0
\end{array}\right.
\end{aligned}
$$

The zero of $8 x-6$ is $x=\frac{3}{4}$.
The zeros of h are $x=\frac{3}{4}, \frac{1}{2}(1 \pm \sqrt{5} i)$.

Alternate Solution

Since $x= \pm 5 i$ are zeros of $f(x)$,
$(x+5 i)(x-5 i)=x^{2}+25$ is a factor of $f(x)$. By long division we have:

$$
\begin{array}{r}
2 x+3 \\
x ^ { 2 } + 0 x + 2 5 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } + 5 0 x + 7 5 } \\
\frac{2 x^{3}+0 x^{2}+50 x}{3 x^{2}+0 x+75} \\
3 x^{2}+0 x+75
\end{array}
$$

Thus, $f(x)=\left(x^{2}+25\right)(2 x+3)$ and the zeros of f are $x= \pm 5 i$ and $x=-\frac{3}{2}$.
57. $h(x)=3 x^{3}-4 x^{2}+8 x+8$. Since $1-\sqrt{3} i$ is a zero, so is $1+\sqrt{3} i$.

$$
\begin{aligned}
& 1-\sqrt{3} i \left\lvert\, \begin{array}{rrrr}
3 & -4 & 8 & 8 \\
& 3-3 \sqrt{3} i & -10-2 \sqrt{3} i & -8 \\
\hline 3 & -1-3 \sqrt{3} i & -2-2 \sqrt{3} i & 0
\end{array}\right. \\
& 1+\sqrt{3} i \begin{array}{rrr}
3 & \begin{array}{r}
-1-3 \sqrt{3} i \\
3+3 \sqrt{3} i
\end{array} & \begin{array}{r}
-2-2 \sqrt{3} i \\
2+2 \sqrt{3} i
\end{array} \\
3 & 2 & 0
\end{array}
\end{aligned}
$$

The zero of $3 x+2$ is $x=-\frac{2}{3}$.
The zeros of h are $x=-\frac{2}{3}, 1 \pm \sqrt{3} i$.
61. (a) The root feature yields the real roots 1 and 2 , and the complex roots $-3 \pm 1.414 i$.
(b) By synthetic division,

| 1 | $\begin{array}{rrrr}-5 & -21 & 22 \\ & 3 & 4 & -1\end{array}$ | -22 | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 | -1 | -22 | 0 |

2 | 1 | 4 | -1 | -22 |
| ---: | ---: | ---: | ---: |
| | 2 | 12 | 22 |
| 1 | 6 | 11 | 0 |

The complex roots of $x^{2}+6 x+11$ are

$$
x=\frac{-6 \pm \sqrt{6^{2}-4(11)}}{2}=-3 \pm \sqrt{2} i .
$$

63. (a) The root feature yields the real root 0.75 , and the complex roots $0.5 \pm 1.118 i$.
(b) By synthetic division,

The complex roots of $8 x^{2}-8 x+12$ are

$$
x=\frac{8 \pm \sqrt{64-4(8)(12)}}{2(8)}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} i .
$$

67. False, a third degree polynomial must have at least one real zero.
68. $f(x)=(x-\sqrt{b} i)(x+\sqrt{b} i)=x^{2}+b$
69. $f(x)=x^{2}-7 x-8=\left(x^{2}-7 x+\frac{49}{4}\right)-8-\frac{49}{4}$

$$
=\left(x-\frac{7}{2}\right)^{2}-\frac{81}{4}
$$

Vertex: $\left(\frac{7}{2},-\frac{81}{4}\right)$
$f(x)=(x-8)(x+1)$
Intercepts: $(8,0),(-1,0),(0,-8)$
75. $f(x)=6 x^{2}+5 x-6=(3 x-2)(2 x+3)$

Intercepts: $\left(\frac{2}{3}, 0\right),\left(-\frac{3}{2}, 0\right),(0,-6)$

$$
\begin{aligned}
f(x) & =6 x^{2}+5 x-6 \\
& =6\left(x^{2}+\frac{5}{6} x+\frac{25}{144}\right)-6-\frac{25}{24} \\
& =6\left(x+\frac{5}{12}\right)^{2}+\frac{169}{24}
\end{aligned}
$$

Vertex: $\left(-\frac{5}{12},-\frac{169}{24}\right)$
77. $12-(-7+5 i)+(-2+3 i)=17-2 i$
65. $-16 t^{2}+48 t=64, \quad 0 \leq t \leq 3$
$-16 t^{2}+48 t-64=0$

$$
t=\frac{-48 \pm \sqrt{1792} i}{-32}
$$

Since the roots are imaginary, the ball never will reach a height of 64 feet. You can verify this graphically by observing that $y_{1}=-16 t^{2}+48 t$ and $y_{2}=64$ do not intersect.
69. $f(x)=x^{4}-4 x^{2}+k$
(a) f has four real zeros for $0<k<4$.
(b) f has two real zeros each of multiplicity 2 for $k=4: f(x)=x^{4}-4 x^{2}+4=\left(x^{2}-2\right)^{2}$.
(c) f has two real zeros and two complex zeros if $k<0$.
(d) f has four complex zeros if $k>4$.

79. $(-3-8 i)^{2}=9+48 i+(-8 i)^{2}$

$$
\begin{aligned}
& =9+48 i-64 \\
& =-55+48 i
\end{aligned}
$$

