Section 2.6 Rational Functions and Asymptotes

- You should know the following basic facts about rational functions.
(a) A function of the form $f(x)=P(x) / Q(x), Q(x) \neq 0$, where $P(x)$ and $Q(x)$ are polynomials, is called a rational function.
(b) The domain of a rational function is the set of all real numbers except those which make the denominator zero.
(c) If $f(x)=P(x) / Q(x)$ is in reduced form, and a is a value such that $Q(a)=0$, then the line $x=a$ is a vertical asymptote of the graph of $f . f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ as $x \rightarrow a$.
(d) The line $y=b$ is a horizontal asymptote of the graph of f if $f(x) \rightarrow b$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$.
(e) Let $f(x)=\frac{P(x)}{Q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}$ where $P(x)$ and $Q(x)$ have no common
factors. factors.

1. If $n<m$, then the x-axis $(y=0)$ is a horizontal asymptote.
2. If $n=m$, then $y=\frac{a_{n}}{b_{m}}$ is a horizontal asymptote.
3. If $n>m$, then there are no horizontal asymptotes.

Solutions to Odd-Numbered Exercises

1. $f(x)=\frac{1}{x-1}$
(a)

x	$f(x)$
0.5	-2
0.9	-10
0.99	-100
0.999	-1000

x	$f(x)$
1.5	2
1.1	10
1.01	100
1.001	1000

x	$f(x)$
5	0.25
10	$0 . \overline{1}$
100	$0 . \overline{01}$
1000	$0 . \overline{001}$

x	$f(x)$
-5	-0.167
-10	-0.0909
-100	-0.0099
-1000	-0.001

(b) The zero of the denominator is $x=1$, so $x=1$ is a vertical asymptote. The degree of the numerator is less than the degree of the denominator so the x-axis, or $y=0$ is a horizontal asymptote.
(c) The domain is all real numbers except $x=1$.
3. $f(x)=\frac{3 x}{|x-1|}$
(a)

x	$f(x)$
0.5	3
0.9	27
0.99	297
0.999	2997

x	$f(x)$
1.5	9
1.1	33
1.01	303
1.001	3003

x	$f(x)$
5	3.75
10	$3 . \overline{33}$
100	$3 . \overline{03}$
1000	$3 . \overline{003}$

x	$f(x)$
-5	-2.5
-10	-2.727
-100	-2.970
-1000	-2.997

(b) The zero of the denominator is $x=1$, so $x=1$ is a vertical asymptote. Since $f(x) \rightarrow 3$ as $x \rightarrow \infty$ and $f(x) \rightarrow-3$ as $x \rightarrow-\infty$, both $y=3$ and $y=-3$ are horizontal asymptotes.
(c) The domain is all real numbers except $x=1$.
5. $f(x)=\frac{3 x^{2}}{x^{2}-1}$
(a)

x	$f(x)$
0.5	-1
0.9	-12.79
0.99	-148.79
0.999	-1498

x	$f(x)$
1.5	5.4
1.1	17.29
1.01	152.3
1.001	1502.3

x	$f(x)$
5	3.125
10	$3 . \overline{03}$
100	$3 . \overline{0003}$
1000	3

x	$f(x)$
-5	3.125
-10	$3 . \overline{03}$
-100	$3 . \overline{0003}$
-1000	3

(b) The zeros of the denominator are $x= \pm 1$ so both $x=1$ and $x=-1$ are vertical asymptotes.

Since the degree of the numerator equals the degree of the denominator, $y=\frac{3}{1}=3$ is a horizontal asymptote.
(c) The domain is all real numbers except $x= \pm 1$.
7. $f(x)=\frac{2}{x+2}$

Vertical asymptote: $x=-2$
Horizontal asymptote: $y=0$
Matches graph (a)
11. $f(x)=\frac{x-2}{x-4}$

Vertical asymptote: $x=4$
Horizontal asymptote: $y=1$
Matches graph (b)
9. $f(x)=\frac{4 x+1}{x}$

Vertical asymptote: $x=0$
Horizontal asymptote: $y=4$
Matches graph (c)
13. $f(x)=\frac{1}{x^{2}}$
(a) Domain: all real numbers except $x=0$
(b) Vertical asymptote: $x=0$

Horizontal asymptote: $y=0$
[Degree of $p(x)<$ degree of $q(x)$]
(c)

17. $f(x)=\frac{2 x^{3}}{x^{2}-1}$
(a) Domain: all real numbers except $x= \pm 1$
(b) Vertical asymptotes: $x= \pm 1$

Horizontal asymptotes: None
[Degree of $p(x)>$ degree of $q(x)$]
(c)

19. $f(x)=\frac{x^{2}-4}{x+2}, g(x)=x-2$
(a) Domain of f : all real numbers except -2

Domain of g : all real numbers
(b) Since $x+2$ is a common factor of both the numerator and the denominator of $f(x), x=-2$ is not a vertical asymptote of $f . f$ has no vertical asymptotes.
(c)

x	-4	-3	-2.5	-2	-1.5	-1	0
$f(x)$	-6	-5	-4.5	undef.	-3.5	-3	-2
$g(x)$	-6	-5	-4.5	-4	-3.5	-3	-2

(d) f and g differ only where f is undefined.
21. $f(x)=\frac{x-3}{x^{2}-3 x}, g(x)=\frac{1}{x}$
(a) Domain of f : all real number except 0 and 3

Domain of g : all real numbers except 0
(b) Since $x-3$ is a common factor of both the numerator and the denominator of $f, x=3$ is not a vertical asymptote of f. The only vertical asymptote is $x=0$.
(c)

x	-1	-0.5	0	0.5	2	3	4
$f(x)$	-1	-2	undef.	2	$\frac{1}{2}$	undef.	$\frac{1}{4}$
$g(x)$	-1	-2	undef	2	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$

(d) They differ only at $x=3$, where f is undefined and g is defined.
23. $f(x)=4-\frac{1}{x}$
(a) As $x \rightarrow \pm \infty, f(x) \rightarrow 4$
(b) As $x \rightarrow \infty, f(x) \rightarrow 4$ but is less than 4
(c) As $x \rightarrow-\infty, f(x) \rightarrow 4$ but is greater than 4
27. $f(x)=\frac{x^{2}-9}{x+1}=\frac{(x+3)(x-3)}{x+1}$

The zeros of f correspond to the zeros of the numerator and are $x= \pm 3$.
31. $C=\frac{255 p}{100-p}, 0 \leq p<100$
(a) $C(10)=\frac{255(10)}{100-10} \approx 28.33$ million dollars
(c) $C(75)=\frac{255(75)}{100-75}=765$ million dollars
(d)

25. $f(x)=\frac{2 x-1}{x-3}$
(a) As $x \rightarrow \pm \infty, f(x) \rightarrow 2$
(b) As $x \rightarrow \infty, f(x) \rightarrow 2$ but is greater than 2
(c) As $x \rightarrow-\infty, f(x) \rightarrow 2$ but is less than 2
29. $f(x)=1-\frac{2}{x-5}=\frac{x-7}{x-5}$

The zero of f corresponds to the zero of the numerator and is $x=7$.
(b) $C(40)=\frac{255(40)}{100-40}=170$ million dollars
(e) $C \rightarrow \infty$ as $x \rightarrow 100$. No, it would not be possible to remove 100% of the pollutants.
33. (a)

M	200	400	600	800	1000	1200	1400	1600	1800	2000
t	0.472	0.596	0.710	0.817	0.916	1.009	1.096	1.178	1.255	1.328

The greater the mass, the more time required per oscillation. The model is a good fit to the actual data.
(b) You can find M corresponding to $t=1.056$ by finding the point of intersection of

$$
t=\frac{38 M+16,965}{10(M+500)} \quad \text { and } \quad t=1.056
$$

If you do this, you obtain $M \approx 1306$ grams.
35. $N=\frac{20(5+3 t)}{1+0.04 t}, 0 \leq t$
37. (a)
(a) $N(5) \approx 333$ deer

$$
N(10)=500 \text { deer }
$$

$$
N(25)=800 \text { deer }
$$

(b) The herd is limited by the horizontal asymptote:

$$
N=\frac{60}{0.04}=1500 \text { deer }
$$

(b) For 2002, $t=12$ and $M \approx 889$ thousand
(c) No, this model predicts that $M \rightarrow 0$ as t increases.
39. True, $f(x)=x^{3}-2 x^{2}-5 x+6=\frac{x^{3}-2 x^{2}-5 x+6}{1}$ is a rational function.
41. $f(x)=\frac{1}{x^{2}+1}$ is one possible answer.
43. $f(x)=\frac{-3 x^{2}}{x(2 x-5)}=\frac{-3 x^{2}}{2 x^{2}-5 x}$ is one possible answer.
45. $x(10-x)=25$

$$
\begin{aligned}
& 0=x^{2}-10 x+25 \\
& 0=(x-5)^{2} \\
& x=5
\end{aligned}
$$

47. $t^{3}-50 t=0$
$t\left(t^{2}-50\right)=0$
$t=0, \pm 5 \sqrt{2}$
48. $x^{4}-225=0$
$\left(x^{2}-15\right)\left(x^{2}+15\right)=0$ $x= \pm \sqrt{15}, \pm \sqrt{15} i$
49. $3 \left\lvert\, \begin{array}{lll}1-10 & 15\end{array}\right.$

	3	-21
1	-7	-6

$\frac{x^{2}-10 x+15}{x-3}=x-7+\frac{-6}{x-3}$
53. $-6 \left\lvert\, \begin{array}{rrr}4 & 3 & -10 \\ -24 & 126\end{array}\right.$
$\frac{4 x^{2}+3 x-10}{x+6}=4 x-21+\frac{116}{x+6}$
55. $(x+2)(x-6 i)(x+6 i)=(x+2)\left(x^{2}+36\right)=x^{3}+2 x^{2}+36 x+72$
57. $(x-1)(x-(-3+2 i))(x-(-3-2 i))=(x-1)\left((x+3)^{2}+4\right)$

$$
\begin{aligned}
& =(x-1)\left(x^{2}+6 x+13\right) \\
& =x^{3}+5 x^{2}+7 x-13
\end{aligned}
$$

