Section 2.6 Rational Functions and Asymptotes

- You should know the following basic facts about rational functions.
 - (a) A function of the form f(x) = P(x)/Q(x), $Q(x) \neq 0$, where P(x) and Q(x) are polynomials, is called a rational function.
 - (b) The domain of a rational function is the set of all real numbers except those which make the denominator zero.
 - (c) If f(x) = P(x)/Q(x) is in reduced form, and *a* is a value such that Q(a) = 0, then the line x = a is a vertical asymptote of the graph of $f. f(x) \rightarrow \infty$ or $f(x) \rightarrow -\infty$ as $x \rightarrow a$.
 - (d) The line y = b is a horizontal asymptote of the graph of f if $f(x) \rightarrow b$ as $x \rightarrow \infty$ or $x \rightarrow -\infty$.
 - (e) Let $f(x) = \frac{P(x)}{Q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$ where P(x) and Q(x) have no common factors.
 - 1. If n < m, then the x-axis (y = 0) is a horizontal asymptote.
 - 2. If n = m, then $y = \frac{a_n}{b_m}$ is a horizontal asymptote.
 - 3. If n > m, then there are no horizontal asymptotes.

Solutions to Odd-Numbered Exercises

(b) The zero of the denominator is x = 1, so x = 1 is a vertical asymptote. The degree of the numerator is less than the degree of the denominator so the *x*-axis, or y = 0 is a horizontal asymptote.

(c) The domain is all real numbers except x = 1.

3.
$$f(x) = \frac{3x}{|x-1|}$$

(a)	x	f(x)	x	f(x)	x	f(x)	x	f(x)
	0.5	3	1.5	9	5	3.75	-5	-2.5
	0.9	27	1.1	33	10	3.33	-10	-2.727
	0.99	297	1.01	303	100	3.03	-100	-2.970
	0.999	2997	1.001	3003	1000	3.003	-1000	-2.997

(b) The zero of the denominator is x = 1, so x = 1 is a vertical asymptote. Since $f(x) \rightarrow 3$ as $x \rightarrow \infty$ and $f(x) \rightarrow -3$ as $x \rightarrow -\infty$, both y = 3 and y = -3 are horizontal asymptotes.

(c) The domain is all real numbers except x = 1.

5. $f(x) = \frac{3x^2}{x^2 - 1}$												
(a)	x	f(x)	x	f(x)		x	f(x)		x	f(x)		
	0.5	-1	1.5	5.4		5	3.125		-5	3.125		
	0.9	-12.79	1.1	17.29		10	3.03		-10	3.03		
	0.99	-148.79	1.01	152.3		100	3.0003		-100	3.0003		
	0.999	-1498	1.001	1502.3		1000	3		-1000	3		

(b) The zeros of the denominator are $x = \pm 1$ so both x = 1 and x = -1 are vertical asymptotes. Since the degree of the numerator equals the degree of the denominator, $y = \frac{3}{1} = 3$ is a horizontal asymptote.

- (c) The domain is all real numbers except $x = \pm 1$.
- **7.** $f(x) = \frac{2}{x+2}$

Vertical asymptote: x = -2Horizontal asymptote: y = 0Matches graph (a)

11. $f(x) = \frac{x-2}{x-4}$ Vertical asymptote: x = 4Horizontal asymptote: y = 1Matches graph (b)

9.
$$f(x) = \frac{4x+1}{x}$$

Vertical asymptote: x = 0Horizontal asymptote: y = 4Matches graph (c)

13. $f(x) = \frac{1}{x^2}$

(a) Domain: all real numbers except x = 0

(b) Vertical asymptote: x = 0
Horizontal asymptote: y = 0
[Degree of p(x) < degree of q(x)]

15.
$$f(x) = \frac{3+x}{3-x}$$

- (a) Domain: all real numbers except x = 3.
- (b) Vertical asymptote: x = 3

Horizontal asymptote: y = -1

$$17. \ f(x) = \frac{2x^3}{x^2 - 1}$$

- (a) Domain: all real numbers except $x = \pm 1$
- (b) Vertical asymptotes: $x = \pm 1$

Horizontal asymptotes: None [Degree of p(x) > degree of q(x)]

19.
$$f(x) = \frac{x^2 - 4}{x + 2}, g(x) = x - 2$$

- (a) Domain of f: all real numbers except -2Domain of g: all real numbers
- (b) Since x + 2 is a common factor of both the numerator and the denominator of f(x), x = -2 is not a vertical asymptote of *f*. *f* has no vertical asymptotes.

(c)	x	-4	-3	-2.5	-2	-1.5	-1	0
	f(x)	-6	-5	-4.5	undef.	-3.5	-3	-2
	g(x)	-6	-5	-4.5	-4	-3.5	-3	-2

(d) f and g differ only where f is undefined.

21.
$$f(x) = \frac{x-3}{x^2-3x}, g(x) = \frac{1}{x}$$

- (a) Domain of *f*: all real number except 0 and 3 Domain of *g*: all real numbers except 0
- (b) Since x 3 is a common factor of both the numerator and the denominator of f, x = 3 is not a vertical asymptote of f. The only vertical asymptote is x = 0.

(c)	x	-1	-0.5	0	0.5	2	3	4
	f(x)	-1	-2	undef.	2	$\frac{1}{2}$	undef.	$\frac{1}{4}$
	g(x)	-1	-2	undef	2	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$

(d) They differ only at x = 3, where f is undefined and g is defined.

23.
$$f(x) = 4 - \frac{1}{x}$$

(a) As $x \to \pm \infty, f(x) \to 4$

- (b) As $x \to \infty$, $f(x) \to 4$ but is less than 4
- (c) As $x \to -\infty$, $f(x) \to 4$ but is greater than 4

27.
$$f(x) = \frac{x^2 - 9}{x + 1} = \frac{(x + 3)(x - 3)}{x + 1}$$

The zeros of *f* correspond to the zeros of the numerator and are $x = \pm 3$.

31.
$$C = \frac{255p}{100 - p}, \ 0 \le p < 100$$

(a) $C(10) = \frac{255(10)}{100 - 10} \approx 28.33$ million dollars
(c) $C(75) = \frac{255(75)}{100 - 75} = 765$ million dollars

25.
$$f(x) = \frac{2x - 1}{x - 3}$$

(a) As $x \to \pm \infty$, $f(x) \to 2$

(b) As $x \to \infty$, $f(x) \to 2$ but is greater than 2

(c) As
$$x \to -\infty$$
, $f(x) \to 2$ but is less than 2

29.
$$f(x) = 1 - \frac{2}{x-5} = \frac{x-7}{x-5}$$

The zero of *f* corresponds to the zero of the numerator and is x = 7.

(b)
$$C(40) = \frac{255(40)}{100 - 40} = 170$$
 million dollars

(e) $C \rightarrow \infty$ as $x \rightarrow 100$. No, it would not be possible to remove 100% of the pollutants.

33. (a)	М	200	400	600	800	1000	1200	1400	1600	1800	2000
	t	0.472	0.596	0.710	0.817	0.916	1.009	1.096	1.178	1.255	1.328

The greater the mass, the more time required per oscillation. The model is a good fit to the actual data.

(b) You can find M corresponding to
$$t = 1.056$$
 by finding the point of intersection of

$$t = \frac{38M + 16,965}{10(M + 500)}$$
 and $t = 1.056$.

If you do this, you obtain $M \approx 1306$ grams.

35.
$$N = \frac{20(5+3t)}{1+0.04t}, \ 0 \le t$$

- (a) $N(5) \approx 333$ deer N(10) = 500 deer N(25) = 800 deer
- (b) The herd is limited by the horizontal asymptote:

$$N = \frac{60}{0.04} = 1500 \text{ deer}$$

- (b) For 2002, t = 12 and $M \approx 889$ thousand
- (c) No, this model predicts that $M \rightarrow 0$ as t increases.

39. True,
$$f(x) = x^3 - 2x^2 - 5x + 6 = \frac{x^3 - 2x^2 - 5x + 6}{1}$$
 is a rational function.

41. $f(x) = \frac{1}{x^2 + 1}$ is one possible answer. **43.** $f(x) = \frac{-3x^2}{x(2x - 5)} = \frac{-3x^2}{2x^2 - 5x}$ is one possible answer.

45.
$$x(10 - x) = 25$$
47. $t^3 - 50t = 0$
49. $x^4 - 225 = 0$
 $0 = x^2 - 10x + 25$
 $t(t^2 - 50) = 0$
 $(x^2 - 15)(x^2 + 15) = 0$
 $0 = (x - 5)^2$
 $t = 0, \pm 5\sqrt{2}$
 $x = \pm \sqrt{15}, \pm \sqrt{15} i$
 $x = 5$
 $x = 5$
 $x = 10, \pm 5\sqrt{2}$

51. 3
$$\begin{bmatrix} 1 & -10 & 15 \\ 3 & -21 \\ 1 & -7 & -6 \end{bmatrix}$$
53. -6 $\begin{bmatrix} 4 & 3 & -10 \\ -24 & 126 \\ 4 & -21 & 116 \end{bmatrix}$

$$\frac{x^2 - 10x + 15}{x - 3} = x - 7 + \frac{-6}{x - 3}$$
53. -6 $\begin{bmatrix} 4 & 3 & -10 \\ -24 & 126 \\ 4 & -21 & 116 \end{bmatrix}$

$$\frac{4x^2 + 3x - 10}{x + 6} = 4x - 21 + \frac{116}{x + 6}$$

55. $(x + 2)(x - 6i)(x + 6i) = (x + 2)(x^2 + 36) = x^3 + 2x^2 + 36x + 72$

57.
$$(x - 1)(x - (-3 + 2i))(x - (-3 - 2i)) = (x - 1)((x + 3)^2 + 4)$$

= $(x - 1)(x^2 + 6x + 13)$
= $x^3 + 5x^2 + 7x - 13$