- 129. False. A logarithmic equation can have any number of extraneous solutions
- 131. To find the length of time it takes for an investment P to double to 2P, solve

$$2P = Pe^{rt}$$
$$2 = e^{rt}$$
$$\ln 2 = rt$$

$$\frac{\ln 2}{r} = t.$$

Thus, you can see that the time is not dependent on the size of the investment, but rather the interest rate.

137.
$$\log_3 22 = \frac{\ln 22}{\log_3 2} \approx 2.814$$

133.
$$f(x) = -3^{-x-3} + 5$$

137.
$$\log_3 22 = \frac{\ln 22}{\ln 3} \approx 2.814$$
 139. $\log_{21} 140 = \frac{\ln 140}{\ln 21} \approx 1.623$

135. $f(x) = \left(\frac{1}{2}\right)^{-x} + 3$

Section 3.5 Exponential and Logarithmic Models

You should be able to solve compound interest problems.

$$1. A = P\left(1 + \frac{r}{n}\right)^{nt}$$

2.
$$A = Pe^{r}$$

- You should be able to solve growth and decay problems.
 - (a) Exponential growth if b > 0 and $y = ae^{bx}$.
 - (b) Exponential decay if b > 0 and $y = ae^{-bx}$.
- You should be able to use the Gaussian model

$$y = ae^{-(x-b)^2/c}.$$

You should be able to use the logistics growth model

$$y = \frac{a}{1 + be^{-(x-c)/d}}.$$

You should be able to use the logarithmic models

$$y = \ln(ax + b) \text{ and } y = \log_{10}(ax + b).$$

Solutions to Odd-Numbered Exercises

1.
$$y = 2e^{x/4}$$

This is an exponential growth model. Matches graph (c).

3.
$$y = 6 + \log_{10}(x + 2)$$

This is a logarithmic model, and contains (-1, 6). Matches graph (b).

5.
$$y = \ln(x + 1)$$

This is a logarithmic model. Matches graph (d).

11. An exponential model seems best.

13. A Gaussian model seems best.

19. Since
$$A = 1000e^{0.12t}$$
, the time to double is given by $2000 = 1000e^{0.12t}$ and we have

$$t = \frac{\ln 2}{0.12} \approx 5.78 \text{ years.}$$

Amount after 10 years: $A = 1000e^{1.2} \approx 3320.12

21. Since
$$A = 750e^{rt}$$
 and $A = 1500$ when $t = 7.75$, we have the following.

$$15000 = 750e^{7.75r}$$

$$r = \frac{\ln 2}{7.75} \approx 0.0894 = 8.94\%$$

Amount after 10 years: $A = 750e^{0.0894(10)} \approx 1833.67

23. Since $A = 500e^{rt}$ and A = 1292.85 when t = 10, we have the following.

 $1292.85 = 500e^{10r}$

$$r = \frac{\ln(1292.85/500)}{10} \approx 0.0950 = 9.5\%$$

The time to double is given by

$$1000 = 500e^{0.095t}$$

$$t = \frac{\ln 2}{0.095} \approx 7.30 \text{ years.}$$

25. Since
$$A = Pe^{0.045t}$$
 and $A = 10,000.00$ when $t = 10$, we have the following.

$$10.000.00 = Pe^{0.045(10)}$$

$$\frac{10,000.00}{e^{0.045(10)}} = P \approx 6376.28$$

The time to double is given by

$$t = \frac{\ln 2}{0.045} \approx 15.40 \text{ years.}$$

27. (a)
$$3P = Pe^{rt}$$

 $3 = e^{rt}$
 $\ln 3 = rt$
 $\frac{\ln 3}{r} = t$

r	2%	4%	6%	8%	10%	12%
$t = \frac{\ln 3}{r}$	54.93	27.47	18.31	13.73	10.99	9.16

(b) $t = 60.89(3.613 \times 10^{-8})^r$

29. Continuous compounding results in faster growth.

$$A = 1 + 0.075[t]$$

and $A = e^{0.07t}$

31.
$$\frac{1}{2}C = Ce^{k(1620)}$$

$$k = \frac{\ln 0.5}{1620}$$

Given C = 10 grams, after 1000 years, we have

$$y = Ce^{[(\ln 0.5)/1620](1000)}$$

$$C \approx 6.52$$
 grams.

33.
$$\frac{1}{2}C = Ce^{k(5730)}$$

$$k = \frac{\ln 0.5}{5730}$$

Given y = 3 grams, after 1000 years, we have

$$3 = Ce^{[(\ln 0.5)/5730](1000)}$$

$$C \approx 2.66$$
 grams.

35.
$$P = 105,300e^{0.015t}$$

$$150,000 = 105,300e^{0.015t}$$

$$\ln \frac{1500}{1053} = 0.015t$$

$$t \approx 23.59$$

The population will reach 150,000 during 2023.

[Note: 2000 + 13.59.]

37.
$$P = 2500e^{kt}$$
, $P(0) = 2500$ represents year 2000

For 1945,
$$t = -55$$
 and

$$1350 = 2500e^{k(-55)}$$

$$\ln \frac{1350}{2500} = -55k$$

$$k \approx 0.0112$$

For 2010,
$$t = 10$$
 and

 $P \approx 2500e^{0.0112(10)} \approx 2796$ people.

39.
$$N = 100e^{kt}$$

$$300 = 100e^{5k}$$

$$k = \frac{\ln 3}{5} \approx 0.2197$$

$$N = 100e^{0.2197t}$$

$$200 = 100e^{0.2197t}$$

$$t = \frac{\ln 2}{0.2197} \approx 3.15 \text{ hours}$$

41.
$$v = Ce^{kt}$$

$$\frac{1}{2}C = Ce^{(1620)k}$$

$$\ln \frac{1}{2} = 1620k$$

$$k = \frac{\ln(1/2)}{1620}$$

When t = 100, we have

$$y = Ce^{[\ln(1/2)/1620](100)} \approx 0.958C = 95.8\%C.$$

After 100 years, approximately 95.8% of the radioactive radium will remain.

43. (a)
$$V = mt + b$$
; $V(0) = 22,000 \Rightarrow b = 22,000$
 $V(2) = 13,000 \Rightarrow 13,000 = 2m + 22,000 \Rightarrow m = -4500$

$$V(t) = -4500t + 22,000$$

(b)
$$V = ae^{kt}$$
; $V(0) = 22,000 \implies a = 22,000$

$$V(2) = 13,000 \Longrightarrow 13,000 = 22,000e^{2k}$$

$$\frac{13}{22} = e^{2k}$$

$$\ln \frac{13}{22} = 2k$$

$$\frac{\frac{13}{22} = e^{2k}}{\ln \frac{13}{22} = 2k}$$

$$k = \frac{1}{2} \ln \frac{13}{22} \approx -0.263$$

$$V = 22,000e^{-0.263t}$$

The exponential model depreciates faster in the first two years.

45.
$$S(t) = 100(1 - e^{kt})$$

(a)
$$15 = 100(1 - e^{k(1)})$$

$$-85 = -100e^k$$
$$k = \ln 0.85$$

$$k \approx -0.1625$$

$$S(t) = 100(1 - e^{-0.1625t})$$

(c)
$$S(5) = 100(1 - e^{-0.1625(5)})$$

 $\approx 55.625 = 55,625 \text{ units}$

49.
$$R = \log_{10} \left(\frac{I}{I_0} \right) = \log_{10} I$$
, since $I_0 = 1$

(a)
$$R = \log_{10} 39,811,000 \approx 7.6$$

(b)
$$R = \log_{10} 12,589,000 \approx 7.1$$

(d) Straight line:
$$V(1) = $17,500$$

$$V(3) = $8500$$

Exponential:
$$V(1) = $16,912$$

$$V(3) = $9993$$

47.
$$N = 30(1 - e^{kt})$$

(a)
$$N = 19$$
, $t = 20$

$$19 = 30(1 - e^{20k})$$

$$20k = \ln \frac{11}{30}$$

$$k \approx -0.050$$

$$N = 30(1 - e^{-0.050t})$$

(b)
$$N = 25$$

$$25 = 30(1 - e^{-0.05t})$$

$$\frac{5}{30} = e^{-0.05t}$$

$$t = -\frac{1}{0.05} \ln \frac{5}{30} \approx 36 \text{ days}$$

(c) No, this is not a linear function.

55. pH = $-\log_{10}[H^+] = -\log_{10}[2.3 \times 10^{-5}] \approx 4.64$

51.
$$\beta(I) = 10 \log_{10}(I/I_0)$$
, where $I_0 = 10^{-12}$ watts per sq meter

(a)
$$\beta(10^{-10}) = 10 \cdot \log_{10} \left(\frac{10^{-10}}{10^{-12}} \right) = 10 \log_{10} 10^2 = 20 \text{ decibels}$$

(b)
$$\beta(10^{-5}) = 10 \cdot \log_{10} \left(\frac{10^{-5}}{10^{-12}} \right) = 10 \log_{10} 10^7 = 70 \text{ decibels}$$

(c)
$$\beta(10^0) = 10 \cdot \log_{10} \left(\frac{10^0}{10^{-12}} \right) = 10 \log_{10} 10^{12} = 120 \text{ decibels}$$

53.
$$\beta = 10 \log_{10} \frac{I}{I_0}$$

$$10^{\beta/10} = \frac{I}{I_0}$$

$$I = I_0 10^{\beta/10}$$

% decrease =
$$\frac{I_0 10^{9.3} - I_0 10^{8.0}}{I_0 10^{9.3}} \times 100 \approx 95\%$$

57.
$$pH = -\log_{10}[H^+]$$

 $-pH = \log_{10}[H^+]$

$$10^{-pH} = [H^+]$$

 $\frac{\text{Hydrogen ion concentration of fruit}}{\text{Hydrogen ion concentration of tablet}} = \frac{10^{-2.5}}{10^{-9.5}} = 10^7$

59. (a)
$$P = 120,000, t = 30, r = 0.075, M = 839.06$$

$$u = M - \left(M - \frac{Pr}{12}\right)\left(1 + \frac{r}{12}\right) = 839.06 - (839.06 - 750)(1 + 0.00625)^{12t}$$

$$v = (839.06 - 750)(1.00625)^{12t}$$

(b) In the early years, the majority of the monthly payment goes toward interest. The interest and principle are equal when $t \approx 20.729 \approx 21$ years.

(c)
$$P = 120,000, t = 20, r = 0.075, M = 966.71$$

$$u = 966.71 - (966.71 - 750)(1.00625)^{12t}$$

$$v = (966.71 - 750)(1.00625)^{12t}$$

u = v when $t \approx 10.73$ years

61.
$$y = ae^{bx}$$

 $1 = ae^{b(0)} \implies 1 = a$
 $10 = e^{b(3)}$
 $\ln 10 = 3b$
 $\frac{\ln 10}{3} = b \implies b \approx 0.7675$
Thus, $y = e^{0.7675x}$.

63.
$$y = ae^{bx}$$

$$\frac{1}{2} = ae^{b(0)} \implies a = \frac{1}{2}$$

$$5 = \frac{1}{2}e^{b(4)}$$

$$10 = e^{4b}$$

$$\ln 10 = 4b$$

$$\frac{\ln 10}{4} = b \implies b \approx 0.5756$$
Thus, $y = \frac{1}{2}e^{0.5756x}$.

65.
$$t_1 = 40.757 + 0.556s - 15.817 \ln s$$

 $t_2 = 1.2259 + 0.0023s^2$

(a) Linear Model: $t_3 \approx 0.2729s - 6.0143$ Exponential Model: $t_4 \approx 1.5385e^{1.0291s}$

(c)	S	30	40	50	60	70	80	90
	t_1	3.6	4.7	6.7	9.4	12.5	15.9	19.6
	t_2	3.3	4.9	7.0	9.5	12.5	15.9	19.9
	t_3	2.2	4.9	7.6	10.4	13.1	15.8	18.5
	t_4	3.7	4.9	6.6	8.8	11.8	15.8	21.1

(d) Model
$$t_1$$
: $S_1 = |3.4 - 3.6| + |5 - 4.7| + |7 - 6.7| + |9.3 - 9.4| + |12 - 12.5| + |15.8 - 15.9| + |20 - 19.6| = 1.9$

Model t_2 : $S_2 = |3.4 - 3.3| + |5 - 4.9| + |7 - 7| + |9.3 - 9.5| + |12 - 12.5| + |15.8 - 15.9| + |20 - 19.9| = 1.1$

Model t_3 : $S_3 = |3.4 - 2.2| + |5 - 4.9| + |7 - 7.6| + |9.3 - 10.4| + |12 - 13.1| + |15.8 - 15.8| + |20 - 18.5| = 5.6$

Model t_4 : $S_4 = |3.4 - 3.7| + |5 - 4.9| + |7 - 6.6| + |9.3 - 8.8| + |12 - 11.8| + |15.8 - 15.8| + |20 - 21.1| = 2.6$

 t_2 , the Quadratic model, is the best fit with the data.

67.
$$t = -2.5 \ln \left(\frac{T - 70}{98.6 - 70} \right)$$

At 9:00 a.m. we have: $t = -2.5 \ln \left(\frac{85.7 - 70}{98.6 - 70} \right) \approx 1.5$ hours.

From this we can conclude that the person died at 7:30 A.M.

- **69.** (a) y = 0.08245x + 4.45274
 - (b) $y = 4.5355(1.01519)^x$
 - (c) The models are nearly identical.
 - (d) For 2005, x = 25

Linear model: $y = 0.08245(25) + 4.45274 \approx 6.514$ billion

Exponential model: $y = 4.5355(1.01519)^{25} \approx 6.61$ billion

(Answers will vary.)

(b) $y = -837.735 + 673.619 \ln(x)$

- (c) The logarithmic model is more accurate. If the rate of growth of health costs is slowed, then the logarithmic model would be better.
- **73.** (a) $y_1 = -1.81x^3 + 14.58x^2 + 16.39x + 10.00$ $y_2 = 23.07 + 121.08 \ln x$ $y_3 = 38.38(1.4227)^x$

(c) Cubic model

x	у	$y-y_1$	$(y - y_1)^2$	$y-y_2$	$(y - y_2)^2$	$y-y_3$	$(y - y_3)^2$
1	40	0.84	0.71	16.93	286.62	-14.60	213.25
2	85	-1.62	2.62	-22.00	483.84	7.32	53.52
3	140	-1.52	2.31	-16.09	258.89	29.48	869.01
4	200	7.00	49.00	9.08	82.40	42.76	1828.56
5	225	5.20	27.04	7.06	49.83	1.30	1.68
6	245	2.74	7.51	4.98	24.84	-73.26	5367.34

(d) Cubic model

*y*₁: 89.19; *y*₂: 1186.42; *y*₃: 8333.36;

- (e) The sums represent the sum of the squares of the errors.
- 75. False. See Example 5, page 263.