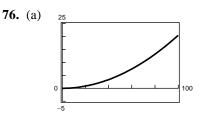
(c)



(b) The parabola intersects y = 10 at $s \approx 69.6$. Thus, the maximum speed is 69.6 mph. Analytically,

$$0.002s^{2} + 0.005s - 0.029 = 10$$

$$2s^{2} + 5s - 29 = 10,000$$

$$2s^{2} + 5s - 10,029 = 0$$

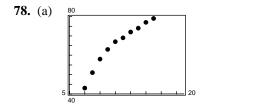
$$a = 2, b = 5, c = -10,029$$

$$s = \frac{-5 \pm \sqrt{5^{2} - 4(2)(-10,029)}}{2(2)}$$

$$s = \frac{-5 \pm \sqrt{80,257}}{4}$$

$$s \approx -72.1, 69.6$$

The maximum speed if power is not to exceed 10 horsepower is 69.6 miles per hour.



(b)
$$y = -0.352t^2 + 11.830t - 21.245$$

80. True. For
$$f(x)$$
, $\frac{-b}{2a} = -\frac{-10}{2(-4)} = -\frac{10}{8} = -\frac{5}{4}$
For $g(x)$, $\frac{-b}{2a} = \frac{-30}{2(12)} = \frac{-30}{24} = \frac{-5}{4}$

In both cases, $x = -\frac{5}{4}$ is the axis of symmetry.

84. $y = x + 3 = 9 - x^2$ **86.** 3x - 4y = 12 $x^2 + x - 6 = 0$ -4y = 12 - 3x(x + 3)(x - 2) = 0 $y = -\frac{1}{4}(12 - 3x)$ x = -3, x = 2 $y = \frac{3}{4}x - 3$ Thus, (-3, 0) and (2, 5) areYes, y is a function of x.

the points of intersection.

82. $x + y = 8 \implies y = 8 - x$. Then, $-\frac{2}{3}x + y = -\frac{2}{3}x + (8 - x) = 6$ $\implies -\frac{5}{3}x = -2 \implies x = \frac{6}{5}$ and $y = 8 - \frac{6}{5} = \frac{34}{5}$ (1.2, 6.8)

(d) No. The model begins to decrease at a rapid rate.

88. $y = \sqrt{x+3}$ Yes, y is a function of x.

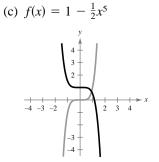
Section 2.2 Polynomial Functions of Higher Degree

Solutions to Even-Numbered Exercises

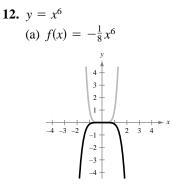
- **2.** $f(x) = x^2 4x$ is a parabola with intercepts (0, 0) and (4, 0) and opens upward. Matches graph (h).
- **4.** $f(x) = 2x^3 3x + 1$ has intercepts (0, 1), (1, 0), $\left(-\frac{1}{2} - \frac{1}{2}\sqrt{3}, 0\right)$ and $\left(-\frac{1}{2} + \frac{1}{2}\sqrt{3}, 0\right)$. Matches graph (a).

6. $f(x) = -\frac{1}{3}x^3 + x^2 - \frac{4}{3}$ has y-intercept $(0, -\frac{4}{3})$. Matches graph (d).

Horizontal shift three units to the left



Reflection in the *x*-axis, vertical shrink and vertical shift one unit upward

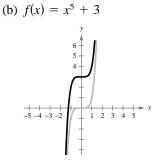


Vertical shrink and reflection in the x-axis

(c)
$$f(x) = -\frac{1}{4}x^{6} + 1$$

Vertical shrink, vertical shift upward one unit, and reflection in the *x*-axis

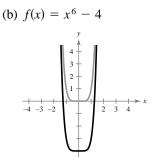
8. $f(x) = \frac{1}{5}x^5 - 2x^3 + \frac{9}{5}x$ has intercepts (0, 0), (1, 0), (-1, 0), (3, 0), (-3, 0). Matches (b).



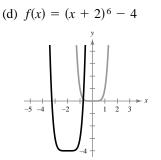
Vertical shift three units upward



Reflection in the *x*-axis, vertical shrink and horizontal shift one unit to the left



Vertical shift 4 units downward



Horizontal shift two units to the left and vertical shift 4 units downward

14.
$$f(x) = -\frac{1}{3}(x^3 - 3x + 2), g(x) = -\frac{1}{3}x^3$$

-8

18.
$$f(x) = \frac{1}{3}x^3 + 5x$$

Degree: 3

Leading coefficient: $\frac{1}{3}$

The degree is odd and the leading coefficient is positive. The graph falls to the left and rises to the right.

22. $f(x) = 2x^5 - 5x + 7.5$

Degree: 5

Leading coefficient: 2

The degree is odd and the leading coefficient is positive. The graph falls to the left and rises to the right.

26.
$$f(s) = -\frac{7}{8}(s^3 + 5s^2 - 7s + 1)$$

Degree: 3
Leading coefficient: $-\frac{7}{8}$

The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right.

16.
$$f(x) = 3x^4 - 6x^2, g(x) = 3x^4$$

20.
$$h(x) = 1 - x^6$$

Degree: 6

Leading coefficient: -1

The degree is even and the leading coefficient is negative. The graph falls to the left and right.

24.
$$f(x) = \frac{3x^4 - 2x + 5}{4}$$

Degree: 4
Leading coefficient: $\frac{3}{4}$

The degree is even and the leading coefficient is positive. The graph rises to the left and right.

28.
$$f(x) = 49 - x^2$$

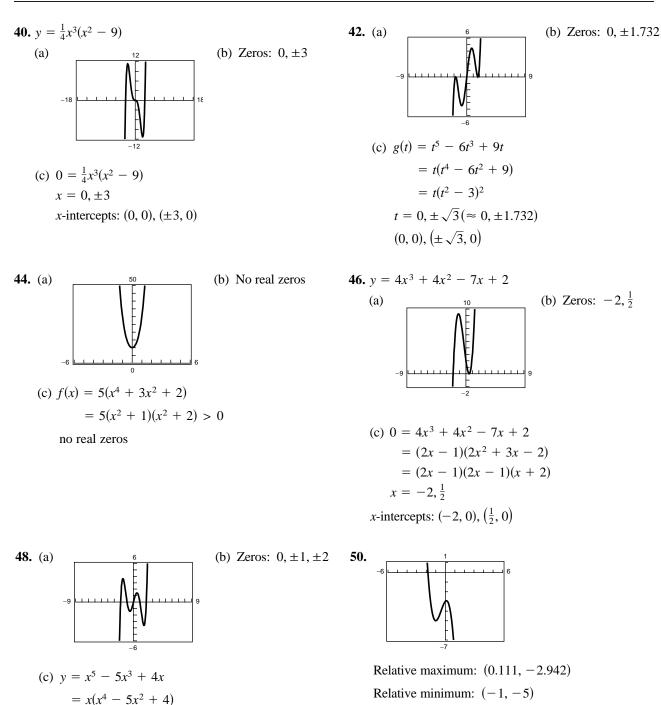
= $(7 - x)(7 + x)$
 $x = \pm 7$

30.
$$f(x) = x^2 + 10x + 25$$
32. $f(x) = 2x^2 - 14x + 24$ **34.** $f(x) = x^4 - x^3 - 20x^2$ $= (x + 5)^2$ $= 2(x^2 - 7x + 12)$ $= x^2(x^2 - x - 20)$ $x = -5$ $= 2(x - 3)(x - 4)$ $= x^2(x + 4)(x - 5)$ $x = 3, 4$ $x = 0, -4, 5$

36.
$$f(x) = \frac{5}{3}x^2 + \frac{8}{3}x - \frac{4}{3}$$
$$= \frac{1}{3}(5x^2 + 8x - 4)$$
$$= \frac{1}{3}(5x - 2)(x + 2)$$
$$x = \frac{2}{5}, -2$$

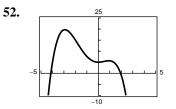
38. (a)

$$\begin{bmatrix}
1 \\
-8
\end{bmatrix}
\begin{bmatrix}
1 \\
-8$$



 $= x(x^{2} - 4)(x^{2} - 1)$ = x(x - 2)(x + 2)(x - 1)(x + 1)Zeros: $0, \pm 1, \pm 2$

 $(0, 0), (\pm 1, 0), (\pm 2, 0)$



Relative maximums: (0.915, 5.646), (-2.915, 19.688)

Relative minimum: (0, 5)

56.
$$f(x) = (x - (-4))(x - 5)$$

= $(x + 4)(x - 5)$
= $x^2 - x - 20$

Note: f(x) = a(x + 4)(x - 5) has zeros -4 and 5 for all nonzero real numbers *a*.

60.
$$f(x) = (x - (-2))(x - (-1))(x - 0)(x - 1)(x - 2)$$

 $= x(x + 2)(x + 1)(x - 1)(x - 2)$
 $= x(x^2 - 4)(x^2 - 1)$
 $= x(x^4 - 5x^2 + 4)$
 $= x^5 - 5x^3 + 4x$

Note: f(x) = a x(x + 2)(x + 1)(x - 1)(x - 2) has zeros -2, -1, 0, 1, 2 for all nonzero real numbers *a*.

64.
$$f(x) = (x - 4)(x - (2 + \sqrt{7}))(x - (2 - \sqrt{7}))$$
$$= (x - 4)((x - 2) - \sqrt{7})((x - 2) + \sqrt{7})$$
$$= (x - 4)((x - 2)^2 - 7)$$
$$= (x - 4)(x^2 - 4x - 3)$$
$$= x^3 - 8x^2 + 13x + 12$$

54.
$$f(x) = (x - 0)(x - (-8))$$

= $x(x + 8)$
= $x^2 + 8x$

Note: f(x) = ax(x + 8) has zeros 0 and -8 for all nonzero real numbers *a*.

58.
$$f(x) = (x - 0)(x - 2)(x - 7)$$

= $x(x - 2)(x - 7)$
= $x^3 - 9x^2 + 14x$

Note: f(x) = ax(x - 2)(x - 7) has zeros 0, 2, 7 for all nonzero real numbers *a*.

62.
$$f(x) = (x - (6 + \sqrt{3}))(x - (6 - \sqrt{3}))$$
$$= ((x - 6) - \sqrt{3})((x - 6) + \sqrt{3})$$
$$= (x - 6)^2 - 3$$
$$= x^2 - 12x + 36 - 3$$
$$= x^2 - 12x + 33$$

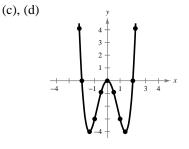
Note: $f(x) = a(x - (6 + \sqrt{3})(x - (6 - \sqrt{3})))$ has zeros $6 + \sqrt{3}$ and $6 - \sqrt{3}$ for all nonzero real numbers a.

66. (a) The degree of g is even and the leading coefficient is 2. The graph rises to the left and rises to the right.

(b)
$$g(x) = x^4 - 4x^2 = x^2(x^2 - 4)$$

= $x^2(x - 2)(x + 2)$

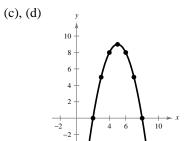
zeros: 0, 2, -2: (0, 0), (±2, 0)



68. (a) The degree of g is even and the leading coefficient is -1. The graph falls to the left and to the right.

(b)
$$g(x) = -x^2 + 10x - 16 = -(x^2 - 10x + 16)$$

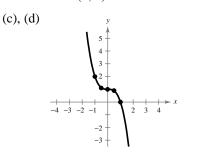
= $-(x - 8)(x - 2)$
Zeros: 2, 8: (2, 0), (8, 0)



70. (a) The degree of f is odd and the leading coefficient is -1. The graph rises to the left and falls to the right.

(b)
$$f(x) = 1 - x^3 = (1 - x)(1 + x + x^2)$$

Zero: 1: (1, 0)



72. (a) The degree of f is odd and the leading coefficient is -4. The graph rises to the left and falls to the right.

(b)
$$f(x) = -4x^3 + 4x^2 + 15x$$

 $= -x(4x^2 - 4x - 15)$
 $= -x(2x + 3)(2x - 5)$
zeros: $0, -\frac{3}{2}, \frac{5}{2}$: $(-1.5, 0), (0, 0), (2.5, 0)$
(c), (d)

76. (a) The degree of *h* is odd and the leading coefficient is $\frac{1}{3}$. The graph falls to the left and rises to the right.

(b)
$$h(x) = \frac{1}{3}x^3(x-4)^2$$

Zeros: 0, 4: (0, 0), (4, 0)

(c), (d)

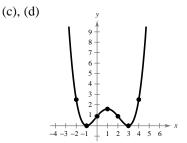
$$y$$

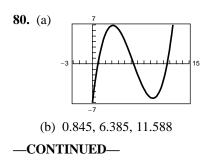
 12^{+}
 10^{+}
 8^{+}
 4^{+}
 2^{+}
 -6^{-4}
 -2^{+}
 2^{+}
 2^{+}
 2^{+}
 2^{+}
 4^{+}
 2^{+}
 2^{+}
 4^{+}
 2^{+}
 4^{+}
 2^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 2^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}
 4^{+}

78. (a) The degree of g is even and the leading coefficient is $\frac{1}{10}$. The graph rises to the left and to the right.

(b)
$$g(x) = \frac{1}{10}(x+1)^2(x-3)^2$$

Zeros: -1, 3: (-1, 0), (3, 0)





The function has three zeros. They are in the intervals (0, 1), (6, 7) and (11, 12).

74. (a) The degree of f is even and the leading coefficient is 3. The graph of f rises to the right and to the left.

(b)
$$f(x) = 3x^4 - 48x^2 = 3x^2(x^2 - 16)$$

= $3x^2(x - 4)(x + 4)$

Zeros: 0, 4, -4: (0, 0), (± 4 , 0)

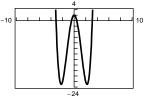
(c), (d)

$$y$$
 200^{+}
 150^{-}
 100^{-}
 50^{-}
 $-5^{-3^{-2}}$
 2^{-3}
 3^{-5}

80. —CONTINUED—

	-		,				
(c)	x	<i>y</i> ₁		x	<i>Y</i> ₁	x	<i>Y</i> ₁
	0.81	-0.2336		6.36	0.07947	11.55	-0.2298
	0.82	-0.167		6.37	0.04775	11.56	-0.1695
	0.83	-0.1008		6.38	0.01604	11.57	-0.1088
	0.84	-0.035		6.39	-0.0157	11.58	-0.0478
	0.85	0.03048		6.40	-0.0474	11.59	0.01363
	0.86	0.09559		6.41	-0.079	11.60	0.07536
	0.87	0.16035		6.42	-0.1107	11.61	0.13744

82. (a)



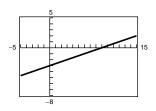
The function has four zeros. They are in the intervals (0, 1), (3, 4), (-1, 0) and (-4, -3).

(b) Notice that f is even. Hence, the zeros come in symmetric pairs. Zeros: $\pm 0.452, \pm 3.130$

(c) Because the function is even, we only need to verify the positive zeros.

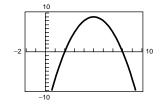
x	<i>y</i> ₁	x	<i>y</i> ₁
0.42	0.26712	3.09	-2.315
0.43	0.18519	3.10	-1.748
0.44	0.10148	3.11	-1.171
0.45	0.01601	3.12	-0.5855
0.46	-0.0712	3.13	0.01025
0.47	-0.1602	3.14	0.61571
0.48	-0.2509	3.15	1.231

84.
$$h(x) = \frac{1}{3}x - 3$$

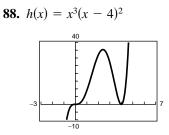


Xmin = -5
Xmax = 15
Xscl = 1
Ymin = -8
Ymax = 5
Yscl = 1

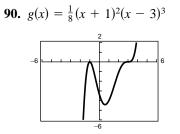
$$86 g(x) = -x^2 + 9x - 14$$



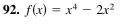
Xmin = -2
Xmax = 10
Xscl = 1
Ymin = -10
Ymax = 10
Yscl = 1

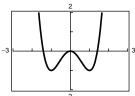


No symmetry. Two x-intercepts (0, 0), (4, 0)



No symmetry. Two *x*-intercepts (-1, 0), (3, 0)

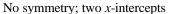


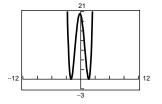


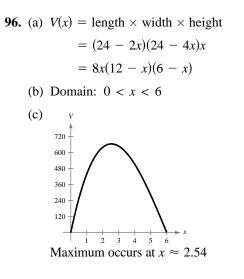
Symmetric with respect to *y*-axis

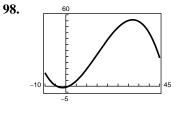
Three *x*-intercepts (0, 0), $(\pm \sqrt{2}, 0)$

94.
$$h(x) = \frac{1}{5}(x+2)^2(3x-5)^2$$

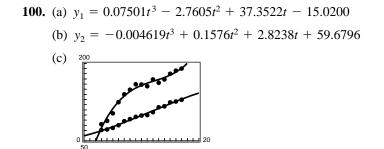








Point of Diminishing Returns: (15.2, 27.3) 15.2 years.



The median price of homes in the South is less than the median price of homes in the Northeast.

102. True. The degree is odd and the leading coefficient is -1.

106.
$$(fg)\left(-\frac{4}{7}\right) = f\left(-\frac{4}{7}\right)g\left(-\frac{4}{7}\right)$$

= $(-11)\left(\frac{8 \cdot 16}{49}\right)$
= $-\frac{1408}{49} \approx -28.7347$

104.
$$(f + g)(-4) = f(-4) + g(-4)$$

= -59 + 128 = 69

108.
$$(f \circ g)(-1) = f(g(-11)) = f(8) = 109$$

110.
$$3(x - 5) < 4x - 7$$

 $3x - 15 < 4x - 7$
 $-8 < x$
 $\xrightarrow{-10} -8 = 6 -4 -2 = 0 -2$

112.

$$\frac{5x-2}{x-7} \le 4$$

$$\frac{5x-2}{x-7} - 4 \le 0$$

$$\frac{5x-2-4(x-7)}{x-7} \le 0$$

$$\frac{x+26}{x-7} \le 0$$

$$[x+26 \ge 0 \text{ and } x-7 < 0] \text{ or } [x+26 \le 0 \text{ and } x-7 > 0]$$

$$[x \ge -26 \text{ and } x < 7] \text{ or } [x \le -26 \text{ and } x > 7]$$

impossible
$$-26 \le x < 7$$

114. Vertex:
$$(3, -6)$$

 $f(x) = a(x - 3)^2 - 6$
Point: $(-1, 2) \implies 2 = a(-1 - 3)^2 - 6$
 $8 = 16a$
 $a = \frac{1}{2}$
 $f(x) = \frac{1}{2}(x - 3)^2 - 6$

116. Vertex:
$$(4, -4)$$

 $f(x) = a(x - 4)^2 - 4$
Point: $(1, 10) \implies 10 = a(1 - 4)^2 - 4$
 $14 = 9a$
 $a = \frac{14}{9}$
 $f(x) = \frac{14}{9}(x - 4)^2 - 4$