Section 2.6 Rational Functions and Asymptotes

Solutions to Even-Numbered Exercises

2. $f(x) = \frac{5x}{x-1}$										
(a)	x	f(x)	x	f(x)		x	f(x)	x	f(x)	
	0.5	-5	1.5	15		5	6.25	-5	4.167	
	0.9	-45	1.1	55		10	5.55	-10	4.545	
	0.99	-495	1.01	505		100	5.05	-100	4.950	
	0.999	-4995	1.001	5005		1000	5.005	-1000	4.995	

(b) The zero of the denominator is x = 1, so x = 1 is a vertical asymptote. The degree of the numerator is equal to the degree of the denominator, so the line $y = \frac{5}{1} = 5$ is a horizontal asymptote.

(c) The domain is all real numbers except x = 1.

(b) The zero of the denominator is x = 1, so x = 1 is a vertical asymptote. Because the degree of the numerator is less than the degree of the denominator, the *x*-axis or y = 0 is a horizontal asymptote.

(c) The domain is all real numbers except x = 1.

6.
$$f(x) = \frac{4x}{x^2 - 1}$$

(a)	x	f(x)	x	f(x)	x	f(x)	x	f(x)
	0.5	$-2.\overline{66}$	1.5	4.8	5	0.833	-5	-0.833
	0.9	-18.95	1.1	20.95	10	0.40	-10	0.40
	0.99	-199	1.01	201	100	0.04	- 100	0.04
	0.999	-1999	1.001	2001	1000	0.004	-1000	0.004

(b) The zeros of the denominator are $x = \pm 1$ so both x = 1 and x = -1 are vertical asymptotes. Because the degree of the numerator is less than the degree of the denominator, the *x*-axis or y = 0 is a horizontal asymptote.

(c) The domain is all real numbers except $x = \pm 1$.

8. $f(x) = \frac{1}{x-3}$

Vertical asymptote: x = 3Horizontal asymptote: y = 0Matches graph (d).

12. $f(x) = -\frac{x+2}{x+4}$

Vertical asymptote: x = -4Horizontal asymptote: y = -1Matches graph (f).

16.
$$f(x) = \frac{2 - 5x}{2 + 2x}$$

- (a) Domain: all real numbers except x = -1
- (b) Vertical asymptote: x = -1Horizontal asymptote: $y = -\frac{5}{2}$

[Degree p(x) = degree q(x)]

10. $f(x) = \frac{1-x}{x}$ Vertical asymptote: x = 0Horizontal asymptote: y = -1Matches graph (e).

14.
$$f(x) = \frac{3}{(x-2)^3}$$

- (a) Domain: all real numbers except x = 2
- (b) Vertical asymptote: x = 2Horizontal asymptote: y = 0[Degree of p(x) < degree of q(x)]

18.
$$f(x) = \frac{3x^2 + 1}{x^2 + x + 1}$$

- (a) Domain: All real numbers. The denominator has no real zeros. [Try the Quadratic Formula on the denominator.]
- (b) Vertical asymptote: none

Horizontal asymptote: y = 3

[degree p(x) = degree q(x)]

20. $f(x) = \frac{x^2(x-3)}{x^2 - 3x}, g(x) = x$

- (a) Domain of *f*: all real numbers except 0 and 3 Domain of *g*: all real numbers
- (b) Because $x^2 3x$ is a common factor of both the numerator and the denominator of f(x), neither x = 0 nor x = 3 is a vertical asymptote of f. Thus, f has no vertical asymptotes.

(c)	x	-1	0	1	2	3	3.5	4
	f(x)	-1	Undef.	1	2	Undef.	3.5	4
	g(x)	-1	0	1	2	3	3.5	4

(d) f and g differ only where f is undefined.

- **22.** $f(x) = \frac{2x-8}{x^2-9x+20}, g(x) = \frac{2}{x-5}$
 - (a) Domain of *f*: all real numbers except 4 and 5 Domain of *g*: all real numbers except 5
 - (b) Because x 4 is a common factor of both the numerator and the denominator of f, x = 4 is not a vertical asymptote of f. The only vertical asymptote is x = 5.

(c)	x	0	1	2	3	4	5	6
	f(x)	$-\frac{2}{5}$	$-\frac{1}{2}$	$-\frac{2}{3}$	-1	Undef.	Undef.	2
	g(x)	$-\frac{2}{5}$	$-\frac{1}{2}$	$-\frac{2}{3}$	-1	-2	Undef.	2

(d) f and g differ only at x = 4 where f is undefined and g is defined.

24.
$$f(x) = 2 + \frac{1}{x-3}$$

(a) As $x \to \pm \infty$, $f(x) \to 2$.
(b) As $x \to \infty$, $f(x) \to 2$ but is greater than 2.

(c) As $x \to -\infty$, $f(x) \to 2$ but is less than 2.

28. $g(x) = \frac{x^3 - 8}{x^2 + 4}$

The zero of g corresponds to the zero of the numerator and is x = 2.

32. (a)
$$C = \frac{25,000(15)}{100 - 15} \approx 4411.76$$

The cost would be \$4411.76.
 $25,000(90)$

(c)
$$C = \frac{25,000(90)}{100 - 90} = 225,000$$

The cost would be \$225,000.

(e) No. The model is undefined for p = 100.

26.
$$f(x) = \frac{2x - 1}{x^2 + 1}$$
(a) As $x \to \pm \infty$, $f(x) \to 0$.
(b) As $x \to \infty$, $f(x) \to 0$ but is greater than 0.
(c) As $x \to -\infty$, $f(x) \to 0$ but is less than 0.

30.
$$h(x) = 6 + \frac{4}{x^2 + 2}$$

There are no real zeros.

(b)
$$C = \frac{25,000(50)}{100 - 50} = 25,000$$

The cost would be \$25,000

The cost would be \$25,000.

34. (a) Use data $(10, \frac{1}{7})$, $(20, \frac{1}{10})$, $(30, \frac{1}{14})$, $(40, \frac{1}{22})$, $(50, \frac{1}{40})$. The least squares line for this data (x, 1/y) is:

	$\frac{1}{y} = 0$).164 —	0.0029 <i>x</i>	$\implies y = \frac{1}{2}$ $= \frac{1}{2}$	$ \frac{1}{0.164 - 0.0029x} \\ \underline{154,000} \\ 25260 - 447x} \\ \underline{154,000} \\ 3(8420 - 149x) $		
(b)	x	10	20	30	40	50	
	у	7.4	9.4	13.0	20.9	52.9	

(c) No, the function is negative for x = 60.