Section 2.6 Rational Functions and Asymptotes

Solutions to Even-Numbered Exercises
2. $f(x)=\frac{5 x}{x-1}$
(a)

x	$f(x)$
0.5	-5
0.9	-45
0.99	-495
0.999	-4995

x	$f(x)$
1.5	15
1.1	55
1.01	505
1.001	5005

x	$f(x)$
5	6.25
10	$5 . \overline{55}$
100	$5 . \overline{05}$
1000	$5 . \overline{005}$

x	$f(x)$
-5	4.167
-10	4.545
-100	4.950
-1000	4.995

(b) The zero of the denominator is $x=1$, so $x=1$ is a vertical asymptote. The degree of the numerator is equal to the degree of the denominator, so the line $y=\frac{5}{1}=5$ is a horizontal asymptote.
(c) The domain is all real numbers except $x=1$.
4. $f(x)=\frac{3}{|x-1|}$
(a)

x	$f(x)$
0.5	6
0.9	30
0.99	300
0.999	3000

x	$f(x)$
1.5	6
1.1	30
1.01	300
1.001	3000

x	$f(x)$
5	0.75
10	$0 . \overline{33}$
100	$0 . \overline{03}$
1000	$0 . \overline{003}$

x	$f(x)$
-5	0.5
-10	0.273
-100	0.0297
-1000	0.003

(b) The zero of the denominator is $x=1$, so $x=1$ is a vertical asymptote. Because the degree of the numerator is less than the degree of the denominator, the x-axis or $y=0$ is a horizontal asymptote.
(c) The domain is all real numbers except $x=1$.
6. $f(x)=\frac{4 x}{x^{2}-1}$
(a)

x	$f(x)$
0.5	$-2 . \overline{66}$
0.9	-18.95
0.99	-199
0.999	-1999

x	$f(x)$
1.5	4.8
1.1	20.95
1.01	201
1.001	2001

x	$f(x)$
5	$0.83 \overline{3}$
10	$0 . \overline{40}$
100	0.04
1000	0.004

x	$f(x)$
-5	$-0.83 \overline{3}$
-10	$0 . \overline{40}$
-100	0.04
-1000	0.004

(b) The zeros of the denominator are $x= \pm 1$ so both $x=1$ and $x=-1$ are vertical asymptotes. Because the degree of the numerator is less than the degree of the denominator, the x-axis or $y=0$ is a horizontal asymptote.
(c) The domain is all real numbers except $x= \pm 1$.
8. $f(x)=\frac{1}{x-3}$

Vertical asymptote: $x=3$
Horizontal asymptote: $y=0$
Matches graph (d).
12. $f(x)=-\frac{x+2}{x+4}$

Vertical asymptote: $x=-4$
Horizontal asymptote: $y=-1$
Matches graph (f).
16. $f(x)=\frac{2-5 x}{2+2 x}$
(a) Domain: all real numbers except $x=-1$
(b) Vertical asymptote: $x=-1$

Horizontal asymptote: $y=-\frac{5}{2}$
[Degree $p(x)=$ degree $q(x)$]
(c)

10. $f(x)=\frac{1-x}{x}$

Vertical asymptote: $x=0$
Horizontal asymptote: $y=-1$
Matches graph (e).
14. $f(x)=\frac{3}{(x-2)^{3}}$
(a) Domain: all real numbers except $x=2$
(b) Vertical asymptote: $x=2$

Horizontal asymptote: $y=0$
[Degree of $p(x)<$ degree of $q(x)$]
(c)

18. $f(x)=\frac{3 x^{2}+1}{x^{2}+x+1}$
(a) Domain: All real numbers. The denominator has no real zeros. [Try the Quadratic Formula on the denominator.]
(b) Vertical asymptote: none

Horizontal asymptote: $y=3$
[degree $p(x)=$ degree $q(x)$]
(c)

20. $f(x)=\frac{x^{2}(x-3)}{x^{2}-3 x}, g(x)=x$
(a) Domain of f : all real numbers except 0 and 3 Domain of g : all real numbers
(b) Because $x^{2}-3 x$ is a common factor of both the numerator and the denominator of $f(x)$, neither $x=0$ nor $x=3$ is a vertical asymptote of f. Thus, f has no vertical asymptotes.
(c)

x	-1	0	1	2	3	3.5	4
$f(x)$	-1	Undef.	1	2	Undef.	3.5	4
$g(x)$	-1	0	1	2	3	3.5	4

(d) f and g differ only where f is undefined.
22. $f(x)=\frac{2 x-8}{x^{2}-9 x+20}, g(x)=\frac{2}{x-5}$
(a) Domain of f : all real numbers except 4 and 5

Domain of g : all real numbers except 5
(b) Because $x-4$ is a common factor of both the numerator and the denominator of $f, x=4$ is not a vertical asymptote of f. The only vertical asymptote is $x=5$.
(c)

x	0	1	2	3	4	5	6
$f(x)$	$-\frac{2}{5}$	$-\frac{1}{2}$	$-\frac{2}{3}$	-1	Undef.	Undef.	2
$g(x)$	$-\frac{2}{5}$	$-\frac{1}{2}$	$-\frac{2}{3}$	-1	-2	Undef.	2

(d) f and g differ only at $x=4$ where f is undefined and g is defined.
24. $f(x)=2+\frac{1}{x-3}$
26. $f(x)=\frac{2 x-1}{x^{2}+1}$
(a) As $x \rightarrow \pm \infty, f(x) \rightarrow 2$.
(b) As $x \rightarrow \infty, f(x) \rightarrow 2$ but is greater than 2 .
(c) As $x \rightarrow-\infty, f(x) \rightarrow 2$ but is less than 2 .
(a) As $x \rightarrow \pm \infty, f(x) \rightarrow 0$.
(b) As $x \rightarrow \infty, f(x) \rightarrow 0$ but is greater than 0 .
(c) As $x \rightarrow-\infty, f(x) \rightarrow 0$ but is less than 0 .
28. $g(x)=\frac{x^{3}-8}{x^{2}+4}$

The zero of g corresponds to the zero of the
30. $h(x)=6+\frac{4}{x^{2}+2}$

There are no real zeros. numerator and is $x=2$.
32. (a) $C=\frac{25,000(15)}{100-15} \approx 4411.76$

The cost would be $\$ 4411.76$.
(c) $C=\frac{25,000(90)}{100-90}=225,000$

The cost would be $\$ 225,000$.
(e) No. The model is undefined for $p=100$.
(b) $C=\frac{25,000(50)}{100-50}=25,000$

The cost would be $\$ 25,000$.
(d)

34. (a) Use data $\left(10, \frac{1}{7}\right),\left(20, \frac{1}{10}\right),\left(30, \frac{1}{14}\right),\left(40, \frac{1}{22}\right),\left(50, \frac{1}{40}\right)$. The least squares line for this data $(x, 1 / y)$ is:

$$
\begin{aligned}
\frac{1}{y}=0.164-0.0029 x \Longrightarrow y & =\frac{1}{0.164-0.0029 x} \\
& =\frac{154,000}{25260-447 x} \\
& =\frac{154,000}{3(8420-149 x)}
\end{aligned}
$$

(b)

x	10	20	30	40	50
y	7.4	9.4	13.0	20.9	52.9

(c) No, the function is negative for $x=60$.

