Chapter P Prerequisites

Section P. 2 Graphs of Equations

Course/Section
Lesson Number
Date

Section Objectives: Students will know how to sketch the graphs of equations by point plotting or using a graphing utility.
I. The Graph of an Equation (pp. 14 - 15) Pace: 10 minutes

- A solution of an equation in two variables, x and y, is an ordered pair, (a, b), such that when x is replaced by a, and y is replaced by b, the resulting equation is a true statement. A graph of an equation of this type is the collection of all points in the rectangular coordinate system which correspond to a solution of the equation.

Example 1. Sketch the graph of the following.
a) $y=2 x+1$

x	-2	-1	0	1	2
$y=2 x+1$	-3	-1	1	3	5

b) $y=x^{2}-2 x-1$

x	-3	-2	-1	0	1	2	3
$y=x^{2}-2 x-1$	14	7	2	-1	-2	-1	2

- Note that point-plotting is easy, but as our equations get more complicated we will need to have other methods.
- State the following procedure for using a graphing utility to graph an equation.

1. Rewrite the equation so that y is isolated on the left side.
2. Enter the equation into the graphing utility.
3. Determine a viewing window that shows all important features of the graph.
4. Graph the equation.

Example 2. Use a graphing utility and four different window settings to graph $x^{3}+y-2 x=0$.
First we solve the equation for y obtaining $y=-x^{3}+2 x$. Then, using the standard view window, we get the following graph.

This is a good viewing window, allowing us to see all important features of the graph. The following would be poor choices.

- Although the standard viewing window worked well in the previous example, as we in the following example, it may not always be the best choice.

Example 3. Use a graphing utility to graph $y=-x^{2}-11$.

Standard window

Adjusted window

Tip: State that some graphs, such as circles, are best graphed using the square setting.

Example 4. You can drive at a constant speed of 65 mph .
a) How far can you drive in 3.2 hours?

Equation: $d=r \bullet t=65 t$

≈ 208.2 miles.
Algebraic Solution:
$d=65 t$
$=65(3.2)$
≈ 208.2
b) How long would it take you to drive 452 miles? Graphical Solution

Algebraic Solution:
$d=65 t$
$452=65 t$ $452 / 65=t$
≈ 7 hours

