## Chapter P Prerequisites

## Section P. 3 Lines in the Plane

Section Objectives: Students will know how to find and use the slopes of lines to write and graph linear equations.
I. The Slope of a Line (pp. 25-26)

Pace: 10 minutes

- Define the slope of a line to be the ratio of the change in $y$ to the change in $x$. In addition, if we know two points on the line, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the change in $y$ is $y_{2}-y_{1}$ and the change in $x$ is $x_{2}-x_{1}$. Therefore, the slope $m$ of a nonvertical line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example 1. Find the slope of the line through each pair of points.
a) $(3,-7)$ and $(-4,2)$
$m=\frac{3-(-7)}{-4-3}=-\frac{10}{7}$

b) $(2,-9)$ and $(-6,-9)$
$m=\frac{-9-(-9)}{-6-2}=\frac{0}{-8}=0$. This line is horizontal.

c) $(5,4)$ and $(5,-8)$

$$
m=\frac{-8-4}{5-5}=\frac{-12}{0}, \text { no slope }
$$



## II. The Point-Slope Form of the Equation of a Line (pp. 27-28)

## Pace: 15 minutes

- Discuss the following: if $(x, y)$ is any other point on a line that contains $\left(x_{1}\right.$, $y_{1}$ ) and with slope $m$, then

$$
\frac{y-y_{1}}{x-x_{1}}=m, \text { or } y-y_{1}=m\left(x-x_{1}\right)
$$

This is called point-slope form. State it as follows.
Point-Slope Form: An equation of the line through the point $\left(x_{1}, y_{1}\right)$ with slope $m$ is $y-y_{1}=m\left(x-x_{1}\right)$.

Example 2. Find the slope-intercept form of the equation of the line with slope 4 that passes through the point $(-6,2)$.

$$
\begin{aligned}
y-2 & =4(x-(-6)) \\
y-2 & =4 x+24 \\
y & =4 x+26
\end{aligned}
$$

Tip: Inform the students that any time they are instructed to find the equation of a line, they should think of point-slope form first.

Example 3. A company purchases a $\$ 20,000$ machine. In 4 years the machine will be worth $\$ 10,000$. Write a linear equation that relates the value $V$ of the machine after $t$ years.
First find the slope of the line through $(0,20,000)$ and $(4,10,000)$.

$$
\begin{aligned}
& m=\frac{10,000-20,000}{4-0}=-\frac{10,000}{4}=-2500 \\
& V-20,000=-2500(t-0) \\
& V=-2500 t+20,000
\end{aligned}
$$

III. Sketching Graphs of Lines (pp. 29-30)

Pace: 10 minutes

- Consider the line given by the linear equation $y=m x+b$. By replacing $x$ with zero, we see that the $y$-intercept of the line is $(0, b)$. Note that $(1, m+$ $b$ ) is also a point on the line. From this we can see that the slope of the line is $m$, since a one unit change in $x$ produces a $m$ unit change in $y$. State the following definition.

The graph of an equation of the form $y=m x+b$ is a line with slope $m$ and $y$-intercept $(0, b)$. This form is called slope-intercept form.

Example 4. Sketch the graph of the following.
a) $y=\frac{2}{3} x+1$. Plot the $y$-intercept $(0,1)$. From this point go up 2 and to the right 3 . This produces another point on the line. Now draw the line through these two points.

b) $y=-2 x-1$. Plot the $y$-intercept $(0,-1)$. From this point go down 2 and to the right 1 . This produces another point on the line. Now draw the line through these two points.


- Discuss the Exploration on page 30 of the text.
- State the following two facts.

1. Two distinct nonvertical lines are parallel if and only if their slopes are equal. That is $m_{1}=m_{2}$.
2. Two nonvertical lines are perpendicular if and only if their slopes are negative reciprocals of each other. That is $m_{1}=1 / m_{2}$.

Example 5. Find the general form of the equation of the line that passes through the point $(1,-3)$ and is (a) parallel to and (b) perpendicular to the line given by $2 x-3 y=1$.
First find the slope of the given line by writing it in slope-intercept form.

$$
\begin{aligned}
2 x-3 y & =1 \\
3 y & =-2 x+1 \\
y & =-\frac{2}{3} x+\frac{1}{3}
\end{aligned}
$$

The slope of this line is $-2 / 3$.

$$
\begin{aligned}
& y-(-3)=-\frac{2}{3}(x-1) \\
& \text { a) } \quad 3 y-9=-2 x+2 \\
& 2 x+3 y-11=0 \\
& y-(-3)=\frac{3}{2}(x-1) \\
& \text { b) } 2 y+6=3 x-3 \\
& 3 x-2 y-9=0
\end{aligned}
$$

