14.
$$y = \frac{3}{4}\cos\frac{\pi x}{12}$$

Period =
$$\frac{2\pi}{b} = \frac{2\pi}{\left(\frac{\pi}{12}\right)} = 24$$

Amplitude:
$$|a| = \frac{3}{4}$$

18.
$$f(x) = \sin 3x$$
, $g(x) = \sin(-3x)$
 g is a reflection of f about the y -axis. (or, about the x -axis)

22.
$$f(x) = \cos 4x$$
, $g(x) = -6 + \cos 4x$
 g is a vertical shift of f six units downward.

18.
$$f(x) = \sin 3x, g(x) = \sin(-3x)$$

26. Shift the graph of f two units upward to obtain the graph of g.

28.
$$f(x) = \sin x, g(x) = \sin \frac{x}{3}$$

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin x	0	1	0	-1	0
$\sin \frac{x}{3}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$

16.
$$f(x) = \cos x$$
, $g(x) = \cos(x + \pi)$
 g is a horizontal shift of f π units to the left.

20.
$$f(x) = \sin x$$
, $g(x) = \sin 3x$
The period of g is one-third the period of f .

24. The period of g is one-half the period of f.

30.
$$f(x) = 2\cos 2x$$
, $g(x) = -\cos 4x$

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
$2\cos 2x$	2	0	-2	0	2
$-\cos 4x$	-1	1	-1	1	-1

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
f(x)	0	4	0	-4	0
g(x)	-1	3	-1	-5	-1

36.
$$f(x) = \sin x$$
, $g(x) = -\cos\left(x + \frac{\pi}{2}\right)$

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin x	0	1	0	-1	0
$-\cos\left(x-\frac{\pi}{2}\right)$	0	1	0	-1	0

Conjecture: $\sin x = -\cos\left(x + \frac{\pi}{2}\right)$

34. $f(x) = -\cos x$

$$g(x) = -\cos\left(x - \frac{\pi}{2}\right)$$

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$-\cos x$	-1	0	1	0	-1
$-\cos(x-\pi)$	0	-1	0	1	0

38. $f(x) = \cos x, g(x) = -\cos(x - \pi)$

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\cos x$	1	0	-1	0	1
$-\cos(x-\pi)$	1	0	-1	0	1

Conjecture: $\cos x = -\cos(x - \pi)$

Period =
$$\frac{2\pi}{2} = \pi$$

Amplitude = 3

х	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
y	-3	0	3	0	-3

858

44.
$$y = -10 \cos \frac{\pi x}{6}$$

Period =
$$\frac{2\pi}{(\pi/6)}$$
 = 12

Amplitude = 10

x	0	3	6	9	12
у	-10	0	10	0	-10

42.
$$y = \frac{5}{2} \sin \frac{\pi x}{4}$$

Period =
$$\frac{2\pi}{(\pi/4)} = 8$$

Amplitude =
$$\frac{5}{2}$$

х	0	2	4	6	8
y	0	$\frac{5}{2}$	0	$-\frac{5}{2}$	0

46.
$$y = \frac{1}{2}\sin(x - \pi)$$

Period =
$$2\pi$$

Amplitude =
$$\frac{1}{2}$$

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
y	0	$-\frac{3}{2}$	0	$\frac{3}{2}$	0

Period = 2π

Amplitude = 6

x	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{5\pi}{6}$
y	6	$3\sqrt{3}$	3	0	-6

859

50.
$$y = -4 + 5\cos\frac{\pi t}{12}$$

$$Period = \frac{2\pi}{(\pi/12)} = 24$$

Amplitude = 5

t	0	6	12	18	24
у	1	-4	-9	-4	1

52.
$$y = 2 \cos x - 3$$

Period = 2π

Amplitude = 2

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
у	-1	-3	-5	-3	-1

54.	v =	$-3\cos(6x +$	π)

Period =
$$\frac{2\pi}{6} = \frac{\pi}{3}$$

Amplitude = 3

Ĵ	x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{3\pi}{12}$	$\frac{\pi}{3}$
]	y	3	0	-3	0	3

860

56.
$$y = -4 \sin\left(\frac{2}{3}x - \frac{\pi}{3}\right)$$

58.
$$y = 3\cos\left(\frac{\pi x}{2} + \frac{\pi}{2}\right) - 3$$

60.
$$y = 5 \cos(\pi - 2x) + 6$$

62.
$$y = -\frac{97}{100}\cos(50\pi t)$$

64.
$$f(x) = a \cos x + d$$

$$Amplitude = \frac{-2 - (-4)}{2} = 1$$

Reflected in the x-axis: a = -1

$$-4 = -1\cos 0 + d$$

$$d = -3$$

$$y = -3 - \cos x$$

66.
$$y = a \cos x + d$$

Amplitude =
$$\frac{1}{2}$$

Period =
$$2\pi$$

Reflected in x-axis, a = -1

$$d = -4$$

$$y = -4 - \frac{1}{2}\cos x$$

68.
$$y = a \sin(bx - c)$$

Amplitude =
$$2 \implies a = 2$$

Period =
$$4\pi$$

$$\frac{2\pi}{b} = 4\pi \Longrightarrow b = \frac{1}{2}$$

Phase shift:
$$c = 0$$

$$y = 2\sin\left(\frac{x}{2}\right)$$

70.
$$y = a \sin(bx - c)$$

Amplitude =
$$2 \implies a = 2$$

$$Period = 4$$

$$\frac{2\pi}{b} = 4 \Longrightarrow b = \frac{\pi}{2}$$

Phase shift:
$$\frac{c}{b} = -1 \Longrightarrow c = -\frac{\pi}{2}$$

$$y = 2\sin\left(\frac{\pi x}{2} + \frac{\pi}{2}\right)$$

72.
$$y_1 = \cos x$$

$$y_2 = -1$$

$$y_1 = y_2$$
 when $x = \pi, -\pi$.

76. The period of the model would change because the

time for a respiratory cycle would decrease.

74. $y_1 = \sin x$

$$y_2 = \frac{\sqrt{3}}{2}$$

$$y_1 = y_2$$
 when $x = \frac{\pi}{3}, \frac{2\pi}{3}, -\frac{4\pi}{3}, -\frac{5\pi}{3}$.

861

78. $S = 74.50 + 43.75 \sin \frac{\pi t}{6}$

Maximum sales: March (t = 3)

Minimum sales: September (t = 9)

80.
$$P = 100 - 20 \cos \frac{8\pi}{3} t$$

$$period = \frac{2\pi}{\left(\frac{8\pi}{3}\right)} = \frac{3}{4}$$

 $\frac{1 \text{ heartbeat}}{\left(\frac{3}{4}\right)} \Longrightarrow \frac{4}{3} \text{ heartbeats/second} = 80 \text{ heartbeats/min}$

- **82.** (a) Yes, y is a function of t because for each value of t there corresponds one and only one value of y.
 - (b) The period is approximately 2(0.375 0.125) = 0.5 seconds. The amplitude is approximately $\frac{1}{2}(2.35 - 1.65) = 0.35$ centimeters.
 - (c) One model is $y = 0.35 \sin 4\pi t + 2$.

84. (a) A model for Chicago is $C(t) = 56.35 + 27.35 \sin\left(\frac{\pi t}{6} + 4.19\right)$.

862

The model is a good fit.

(e) Each model has a period of 12. This corresponds to the 12 months in a year.

86. True

88. $y = 2 + \sin x$ $y = 3.5 + \sin x$

$$y = -2 + \sin x$$

Each value of d produces a vertical shift of $y = \sin x$ upward (or downward) by d units.

(b)

The model is a good fit for most months.

(d) Use the constant term of each model to estimate the average annual temperature.

Honolulu: 84.40°

Chicago: 56.35°

(f) Chicago has a greater variability in temperatures during the year. The amplitude of each model indicates this variability.

90. $y = \sin(x - 1)$

$$y = \sin(x - 3)$$

$$y = \sin(x - (-2))$$

Each value of c produces a horizontal shift of $y = \sin x$ to the left (or right) by c units.

- **92.** (a) In Exercise 91, $f(x) = \cos x$ is even and we saw that $h(x) = \cos^2 x$ is even. Therefore, for f(x) even and $h(x) = [f(x)]^2$, we make the conjecture that h(x) is even.
 - (b) In Exercise 91, $g(x) = \sin x$ is odd and we saw that $h(x) = \sin^2 x$ is even. Therefore, for g(x) odd and $h(x) = [g(x)]^2$, we make the conjecture that h(x) is even.
 - (c) From part (c) of 91, we conjecture that the product of an even function and an odd function is odd.

94.

Asymptotes: x = -11, y = 0

98.
$$\frac{13\pi}{2} = \frac{13\pi}{2} \left(\frac{180}{\pi} \right) = 1170^{\circ}$$

96.

 $f(x) = \frac{10}{(x+4)(x-3)}$

Asymptotes: x = -4, x = 3, y = 0

100.
$$8.5\pi = 8.5\pi \left(\frac{180}{\pi}\right) = 1530^{\circ}$$