Section 9.6 Counting Principles

- You should know The Fundamental Counting Principle.
- ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$ is the number of permutations of n elements taken r at a time.
- Given a set of n objects that has n_{1} of one kind, n_{2} of a second kind, and so on, the number of distinguishable permutations is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

- ${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$ is the number of combinations of n elements taken r at a time.

Solutions to Odd-Numbered Exercises

1. Odd integers: $1,3,5,7,9,11$ 6 ways
2. Prime integers: $2,3,5,7,11$

5 ways
5. Divisible by 4: 4, 8, 12

3 ways
7. Sum is $10: 1+9,2+8,3+7,4+6,5+5,6+4,7+3,8+2,9+1$

9 ways
9. Amplifiers: 4 choices

Compact disc players: 6 choices
Speakers: 8 choices
Total: $4 \cdot 6 \cdot 8=192$ ways
11. Chemist: 3 choices

Statistician: 6 choices
Total: $3 \cdot 6=18$ ways
15. $1^{\text {st }}$ Position: 2 choices
$2^{\text {nd }}$ Position: 3 choices
$3^{\text {rd }}$ Position: 2 choices
$4^{\text {th }}$ Position: 1 choice
Total: $2 \cdot 3 \cdot 2 \cdot 1=12$ ways
Label the four people A, B, C, and D and suppose that A and B are willing to take the first position. The twelve combinations are as follows.

ABCD	BACD
ABDC	BADC
ACBD	BCAD
ACDB	BCDA
ADBC	BDAC
ADCB	BDCA

17. $26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10=6,760,000$
18. (a) $9 \cdot 10 \cdot 10=900$
19. $40^{3}=64,000$
20. (a) $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
(b) $6 \cdot 1 \cdot 4 \cdot 1 \cdot 2 \cdot 1=48$
(b) $9 \cdot 9 \cdot 8=648$
(c) $9 \cdot 10 \cdot 2=180$
(d) $10 \cdot 10 \cdot 10-400=600$
21. ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
22. ${ }_{8} P_{3}=\frac{8!}{5!}=8 \cdot 7 \cdot 6=336$
23. ${ }_{5} P_{4}=\frac{5!}{1!}=120$

$$
\text { So, }{ }_{4} P_{4}=\frac{4!}{0!}=4!=24
$$

31.

$$
\begin{aligned}
14 \cdot{ }_{n} P_{3} & ={ }_{n+2} P_{4} \quad \text { Note } n \geq 3 \text { for this to be defined. } \\
14\left[\frac{n!}{(n-3)!}\right] & =\frac{(n+2)!}{(n-2)!} \\
14 n(n-1)(n-2) & =(n+2)(n+1) n(n-1)(\text { We can divide here by } n(n-1) \text { since } n \neq 0, n \neq 1 .) \\
14 n-28 & =n^{2}+3 n+2 \\
0 & =n^{2}-11 n+30 \\
0 & =(n-5)(n-6) \\
n & =5 \text { or } n=6
\end{aligned}
$$

33. ${ }_{20} P_{6}=27,907,200$
34. ${ }_{120} P_{4}=197,149,680$
35. ${ }_{20} C_{4}=4845$
36. $5!=120$ ways
37. (a) $2^{4}=16$ characters
(b) $2+2^{2}+2^{3}=14$ characters
38. $\frac{7!}{2!1!3!1!}=\frac{7!}{2!3!}=420$
39. ABCD \quad BACD \quad CABD | DABC | |
| :--- | :--- |
| ABDC | BADC |
| ACBD | BCAD |
| CBAD | DACB |
| ACDB | BCDA |
| ADBC | CBDA |
| ADCB | DDCA |
| CDAB | DCAB |
| | |
40. $\frac{7!}{2!1!1!1!1!1!}=\frac{7!}{2!}=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3=2520$
41. ${ }_{6} C_{2}=15$

The 15 ways are listed below.
$\mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AE}, \mathrm{AF}$,
$\mathrm{BC}, \mathrm{BD}, \mathrm{BE}, \mathrm{BF}, \mathrm{CD}$, CE, CF, DE, DF, EF
51. ${ }_{20} C_{4}=4845$ groups
53. ${ }_{40} C_{6}=3,838,380$ ways
55. ${ }_{100} C_{5}=75,287,520$ subsets
57. ${ }_{9} C_{2}=36$ lines
59. (a) ${ }_{12} C_{4}=495$ ways
(b) $\left({ }_{5} C_{2}\right)\left({ }_{7} C_{2}\right)=(10)(21)=210$ ways
61. (a) ${ }_{8} C_{4}=\frac{8!}{4!4!}=70$ ways
(b) There are $2^{4}=16$ ways that a group of four can be formed without any couples in the group. Therefore, if at least one couple is to be in the group, there are $70-16=54$ ways that could occur.
(c) $2 \cdot 2 \cdot 2 \cdot 2=16$ ways
63. ${ }_{5} C_{2}-5=10-5=5$ diagonals
67. False. Order matters in a permutation.
71. The symbol ${ }_{n} P_{r}$ means the number of ways to choose and order r elements out of a set of n elements.
75. ${ }_{n} C_{n}=\frac{n!}{(n-n)!n!}=\frac{n!}{0!n!}=\frac{n!}{n!0!}=\frac{n!}{(n-0)!0!}={ }_{n} C_{0}$
77. ${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$

$$
\begin{aligned}
& =\frac{1}{r!}\left[\frac{n!}{(n-r)^{1}}\right] \\
& =\frac{{ }_{n} P_{r}}{r!}
\end{aligned}
$$

79. $\frac{4}{t}+\frac{3}{2 t}=1$

$$
\frac{8+3}{2 t}=1
$$

$$
11=2 t
$$

$$
t=\frac{11}{2}=5.5
$$

83. $x=\frac{\left|\begin{array}{ll}35 & 1 \\ 10 & 2\end{array}\right|}{\left|\begin{array}{ll}8 & 1 \\ 6 & 2\end{array}\right|}=\frac{60}{10}=6$
$y=\frac{\left|\begin{array}{ll}8 & 35 \\ 6 & 10\end{array}\right|}{\left|\begin{array}{ll}8 & 1 \\ 6 & 2\end{array}\right|}=\frac{-130}{10}=-13$
Answer: $(6,-13)$
84. $e^{x / 3}=16$
$\frac{x}{3}=\ln 16$
$x=3 \ln 16 \approx 8.32$
85. $x=\frac{\left|\begin{array}{rr}-74 & -11 \\ 8 & -4\end{array}\right|}{\left|\begin{array}{rr}10 & -11 \\ -8 & -4\end{array}\right|}=\frac{384}{-128}=-3$
$y=\frac{\left|\begin{array}{rr}10 & -74 \\ -8 & 8\end{array}\right|}{\left|\begin{array}{rr}10 & -11 \\ -8 & -4\end{array}\right|}=\frac{-512}{-128}=4$
Answer: $(-3,4)$
86. $(x-1)^{6}=x^{6}-6 x^{5}+15 x^{4}-20 x^{3}+15 x^{2}-6 x+1$
87. $(3 x-y)^{4}=81 x^{4}-108 x^{3} y+54 x^{2} y^{2}-12 x y^{3}+y^{4}$
