Section 9.6 Counting Principles

■ You should know The Fundamental Counting Principle.

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
 is the number of permutations of *n* elements taken *r* at a time.

Given a set of *n* objects that has n_1 of one kind, n_2 of a second kind, and so on, the number of distinguishable permutations is

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

 $\blacksquare _{n}C_{r} = \frac{n!}{(n-r)!r!}$ is the number of combinations of *n* elements taken *r* at a time.

Solutions to Odd-Numbered Exercises

- 1. Odd integers: 1, 3, 5, 7, 9, 11 6 ways
- Divisible by 4: 4, 8, 12 3 ways
- **7.** Sum is 10:1 + 9, 2 + 8, 3 + 7, 4 + 6, 5 + 5, 6 + 4, 7 + 3, 8 + 2, 9 + 1 9 ways
- 9. Amplifiers: 4 choices
 Compact disc players: 6 choices
 Speakers: 8 choices
 Total: 4 · 6 · 8 = 192 ways

13. 10! = 3,628,800 ways

3. Prime integers: 2, 3, 5, 7, 11 5 ways

- **11.** Chemist: 3 choices Statistician: 6 choices Total: $3 \cdot 6 = 18$ ways
- 15. 1st Position: 2 choices 2nd Position: 3 choices 3rd Position: 2 choices 4th Position: 1 choice

Total: $2 \cdot 3 \cdot 2 \cdot 1 = 12$ ways

Label the four people A, B, C, and D and suppose that A and B are willing to take the first position. The twelve combinations are as follows.

ı I
)
,

17. $26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 6,760,000$												
19.	(a) 9 • 1	$0 \cdot 10 = 9$	00	21. $40^3 = 64$,000	23.	(a) 6	• 5 •	4•3	3•2	2•1	= 720
	(b) 9 • 9	• $8 = 648$					(b) 6	• 1 •	4 •	1•2	2•1	= 48
	(c) 9 • 1	$0 \cdot 2 = 180$	0									
	(d) 10 •	10 • 10 -	400 = 600									
25.	$_{n}P_{r}=\overline{(n)}$	$\frac{n!}{(r-r)!}$		27. $_{8}P_{3} = \frac{8!}{5!} =$	$= 8 \cdot 7 \cdot 6 = 336$	6 29.	$_{5}P_{4} =$	$\frac{5!}{1!} =$	= 120			
	So, $_{4}P_{4} =$	$\frac{4!}{0!} = 4! =$	24.									
31.		$14 \cdot {}_{n}P_{3} =$	$=_{n+2}P_4$	Note $n \ge 3$	3 for this to be de	fined.						
	$14\left[\frac{n!}{(n-3)!}\right] = \frac{(n+2)!}{(n-2)!}$											
	$14n(n-1)(n-2) = (n+2)(n+1)n(n-1)$ (We can divide here by $n(n-1)$ since $n \neq 0, n \neq 1$.)											
	$14n - 28 = n^2 + 3n + 2$											
	$0 = n^2 - 11n + 30$											
	0 = (n - 5)(n - 6)											
	n = 5 or $n = 6$											
33.	$_{20}P_6 = 27$	7,907,200		35. $_{120}P_4 = 197,149,680$ 37. $_{20}C_4 = 4845$								
39.	5! = 120 ways				41. (a) $2^4 =$	= 16 chara	cters					
					(b) 2 +	$-2^2+2^3=$	= 14 cl	naract	ers			
43.	$\frac{7!}{2!1!3!1!}$	$=\frac{7!}{2!3!}=4!$	20		45. $\frac{7!}{2!1!1!1}$	$\frac{7!}{1!1!} = \frac{7!}{2!}$	= 7 •	6 • :	5•4	• 3	= 25	520
47.	ABCD	BACD	CABD	DABC	49. $_6C_2$ =	= 15						
	ABDC	BADC	CADB	DACB	The 1	15 ways ar	e listed	below	N.			
	ACBD	BCAD	CBAD	DBAC	AB,	AC, AD, A	E, AF,					
	ACDB	BCDA	CBDA	DBCA	BC,	BD, BE, B	F, CD,					
	ADBC	BDAC	CDAB	DCAB	CE,	CF, DE, D	F, EF					
	ADCB	BDCA	CDBA	DCBA								
51.	$_{20}C_4 = 48$	345 groups			53. ₄₀ C ₆	= 3,838,3	80 way	'S				
55.	$_{100}C_5 = 7$	5,287,520 s	subsets		57. $_9C_2 = 36$ lines							
59.	(a) ${}_{12}C_4 =$	= 495 ways										
	(b) $({}_5C_2)$	(b) ${}_{5}C_{2}{}_{7}(_{7}C_{2}) = (10)(21) = 210$ ways										

61. (a) $_{8}C_{4} = \frac{8!}{4!4!} = 70$ ways

- (b) There are $2^4 = 16$ ways that a group of four can be formed without any couples in the group. Therefore, if at least one couple is to be in the group, there are 70 16 = 54 ways that could occur.
- (c) $2 \cdot 2 \cdot 2 \cdot 2 = 16$ ways

63.
$${}_{5}C_{2} - 5 = 10 - 5 = 5$$
 diagonals

67. False. Order matters in a permutation.

71. The symbol $_{n}P_{r}$ means the number of ways to choose and order *r* elements out of a set of *n* elements.

65. $_{8}C_{2} - 8 = 28 - 8 = 20$ diagonals

69. False. for example, ${}_{1}P_{1} = {}_{1}C_{1} = 1$

73. (b) ${}_{10}P_6$ is larger than ${}_{10}C_6$ because the permutations count different orderings as distinct.

75.
$$_{n}C_{n} = \frac{n!}{(n-n)!n!} = \frac{n!}{0!n!} = \frac{n!}{n!0!} = \frac{n!}{(n-0)!0!} = {}_{n}C_{0}$$

77. $_{n}C_{r} = \frac{n!}{(n-r)!r!}$
 $= \frac{1}{r!} \left[\frac{n!}{(n-r)^{1}} \right]$
 $= \frac{nP_{r}}{r!}$

79.
$$\frac{4}{t} + \frac{3}{2t} = 1$$

 $\frac{8+3}{2t} = 1$

11 = 2t
 $t = \frac{11}{2} = 5.5$

81. $e^{x/3} = 16$
 $\frac{x}{3} = \ln 16$
 $x = 3 \ln 16 \approx 8.32$

83.
$$x = \frac{\begin{vmatrix} 35 & 1 \\ 10 & 2 \end{vmatrix}}{\begin{vmatrix} 8 & 1 \\ 6 & 2 \end{vmatrix}} = \frac{60}{10} = 6$$

 $y = \frac{\begin{vmatrix} 8 & 35 \\ 6 & 10 \\ 8 & 1 \\ 6 & 2 \end{vmatrix}} = \frac{-130}{10} = -13$
Answer: (6, -13)
85. $x = \frac{\begin{vmatrix} -74 & -11 \\ 8 & -4 \end{vmatrix}}{\begin{vmatrix} 10 & -11 \\ -8 & -4 \end{vmatrix}} = \frac{384}{-128} = -3$
 $y = \frac{\begin{vmatrix} 10 & -74 \\ -8 & 8 \\ 10 & -11 \\ -8 & -4 \end{vmatrix}} = \frac{-512}{-128} = 4$

87.
$$(x - 1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$$

89.
$$(3x - y)^4 = 81x^4 - 108x^3y + 54x^2y^2 - 12xy^3 + y^4$$