The sales in 1997 were approximately \$1002.6 million.

- **90.** False, it would be sufficient to use the midpoint formula 15 times.
- **92.** False, the polygon could be a rhombus. For example, consider the points (4, 0), (0, 6), (-4, 0) and (0, -6).
- **94.** No, the scales can be different. The scales depend on the magnitude of the coordinates. See figure P.20.

Section P.2 Graphs of Equations

2.
$$y = x^2 - 3x + 2$$

(a) $(2, 0)$: $(2)^2 - 3(2) + 2 \stackrel{?}{=} 0$

$$4 - 6 + 2 \stackrel{?}{=} 0$$

 $0 = 0$

Yes, the point is on the graph.

(b)
$$(-2, 8)$$
: $(-2)^2 - 3(-2) + 2 \stackrel{?}{=} 8$
 $4 + 6 + 2 \stackrel{?}{=} 8$
 $12 \neq 8$

No, the point is not on the graph.

4.
$$y = \frac{1}{x^2 + 1}$$

(a)
$$(0,0)$$
: $\frac{1}{0^2 + 1} \stackrel{?}{=} 0$ $\frac{1}{1} \stackrel{?}{=} 0$

No, the point is not on the graph.

(b)
$$(3, 0.1)$$
: $\frac{1}{3^2 + 1} \stackrel{?}{=} 0.1$

$$\frac{1}{9 + 1} \stackrel{?}{=} 0.1$$

$$\frac{1}{10} \stackrel{?}{=} 0.1$$

$$0.1 = 0.1$$

Yes, the point is on the graph.

6.
$$x^2 + y^2 = 20$$

(a) $(3, -2)$: $3^2 + (-2)^2 \stackrel{?}{=} 20$
 $9 + 4 \stackrel{?}{=} 20$
 $13 \neq 20$

No, the point is not on the graph.

(b)
$$(-4, 2)$$
: $(-4)^2 + 2^2 \stackrel{?}{=} 20$
 $16 + 4 \stackrel{?}{=} 20$
 $20 = 20$

Yes, the point is on the graph.

8.
$$y = \frac{1}{3}x^3 - 2x^2$$

(a) $(2, -\frac{16}{3})$: $\frac{1}{3}(2)^3 - 2(2)^2 \stackrel{?}{=} -\frac{16}{3}$
 $\frac{1}{3} \cdot 8 - 2 \cdot 4 \stackrel{?}{=} -\frac{16}{3}$
 $\frac{8}{3} - 8 \stackrel{?}{=} -\frac{16}{3}$
 $\frac{8}{3} - \frac{24}{3} \stackrel{?}{=} -\frac{16}{3}$
 $-\frac{16}{3} = -\frac{16}{3}$

Yes, the point is on the graph.

(b)
$$(-3, 9)$$
: $\frac{1}{3}(-3)^3 - 2(-3)^2 \stackrel{?}{=} 9$
 $\frac{1}{3}(-27) - 2(9) \stackrel{?}{=} 9$
 $-9 - 18 \stackrel{?}{=} 9$
 $-27 \neq 9$

No, the point *is not* on the graph.

10.
$$y = \frac{3}{2}x - 1$$

x	-2	0	<u>2</u> 3	1	2
у	-4	-1	0	$\frac{1}{2}$	2

12.	٠,	_	1	_	v2
14.	ν	=	4	_	x-

x	-2	-1	0	1	2
у	0	3	4	3	0

14.
$$y = \sqrt{x-1}$$

х	1	2	5	10	17
у	0	1	2	3	4

16. (a)
$$y = \frac{6x}{x^{-2} + 1}$$

х	-2	-1	0	1	2
у	$-\frac{48}{5}$	-3	undef.	3	<u>48</u> 5

The values of y are increasing without bound (approaching infinity). In fact, the values of y are approaching 6x as x gets large. No, y cannot be negative for positive values of x.

- 18. $y = x^2 2x$ is a parabola. Matches (c).
- **20.** $y = 2\sqrt{x}$ passes through the origin. Matches (e).
- 22. y = |x| 3 involves an absolute value. Matches (b).

24.
$$y = 2x - 3$$

26.
$$y = x^2 - 1$$

28.
$$y = -x^2 - 4x$$

32.
$$y = \sqrt{1-x}$$

34.
$$y = 4 - |x|$$

36.
$$x = y^2 - 4$$

38.
$$y = (x + 1)(x - 3)$$

(-1, 0), (0, -3), (3, 0)

40. Intercepts: $(0, -1), (\frac{3}{2}, 0)$

Intercepts:

46.
$$y = \frac{4}{x}$$

No intercepts

48.
$$y = (6 - x)\sqrt{x}$$

Intercepts: (0, 0), (6, 0)

50. Intercepts:
$$(-1, 0), (0, 1)$$

52.
$$y = -3x + 50$$

The specified setting gives a more complete graph. (The *y*-intercept is visible.)

54.
$$y = 4(x+5)\sqrt{4-x}$$

56.
$$y = x^3 - 3x^2 + 4$$
 Range/Window

58.
$$y = 8\sqrt[3]{x - 6}$$
 Range/Window

The specified setting gives a more complete graph.

60.
$$y_1 = 2 + \sqrt{16 - (x - 1)^2}$$

 $y_2 = 2 - \sqrt{16 - (x - 1)^2}$

A circle is bounded by their graphs.

64.
$$y_1 = \frac{1}{2}x + (x+1)$$

 $y_2 = \frac{3}{2}x + 1$

Graphing these with a graphing utility shows that their graphs are identical. The Associative Property of addition is illustrated.

(a)
$$(2.25, -8.54)$$

62.
$$y_1 = 1 + \sqrt{25 - (x - 3)^2}$$

 $y_2 = 1 - \sqrt{25 - (x - 3)^2}$

66.
$$y_1 = (x - 3) \cdot \frac{1}{x - 3}$$

 $y_2 = 1$

Graphing these with a graphing utility shows that their graphs are identical. The Multiplicative Inverse Property is illustrated. (Except for hole at x = 3 for y_1 .)

70.

(a)
$$(2,3)$$

(c) For
$$y = 5545.25$$
, $t = 2.75$, Algebraically,

$$8100 - 929t = 5545.25$$

$$2554.75 = 929t$$

$$t = 2.75$$
 years

(d) For
$$t = 5.5$$
, $y = 2990.5$. Algebraically, $y = 8100 - 929(5.5) = 2990.5

(b)

74. (a) For 1975,
$$t = 25$$
 and $y \approx 2907.31

For 1992,
$$t = 42$$
 and $y \approx 13,779.34$

(b) Graphing the model y together with $y_2 = 10,200$, y > 10,200 when t > 38.2 or 1988.

(c) For 2002,
$$t = 52$$
 and $y \approx $27,142$

For 2004,
$$t = 54$$
 and $y \approx $30,589$

76. y = 0.464 + 0.091t, $0 \le t \le 6$

(a)	Year	1992	1993	1994	1995	1996	1997	1998
	t	0	1	2	3	4	5	6
	Dividend	.464	.555	.646	.737	.828	.919	1.01

The dividend was 0.65 in 1994 (t = 2).

(c) y = 0.65 when $t \approx 2$ (1994)

(d) For 1997, t = 5 and y = 0.464 + 0.091(5) = 0.464 + 0.455 = 0.919 = 0.92

(e) For 2002, t = 10 and y = .464 + 0.091(10) = 1.37

78. False. A parabola can 0, 1 or 2 *x*-intercepts. For example, $y = x^2 - 4$ has 2 *x*-intercepts: (2, 0) and (-2, 0).

80.
$$y = (x - a)(x - b)$$

 $(-2, 0): 0 = (x + 2)(x - 6) \implies a = -2$
 $(5, 0): 0 = (x + 2)(x - 5) \implies b = 5$

Section P.3 Lines in the Plane

Solutions to Even-Numbered Exercises

2. (a) m = 0. The line is horizontal. Matches L_2 .

(b) $m = -\frac{3}{4}$. Because the slope is negative, the line falls. Matches L_1 .

(c) m = 1. Because the slope is positive, the line rises. Matches L_3 .

6. The line appears to go through (1, 0) and (3, 5).

Slope = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{3 - 1} = \frac{5}{2}$

8. The line appears to go through (0, 7) and (7, 0).

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 7}{7 - 0} = -1$$